WLAN API Reference Guide

1. Overview

The WF88-M SDK provides a comprehensive software development environment for the
ACH118x series Wi-Fi modules. It abstracts the complexities of the underlying Wi-Fi stack
(802.11 b/g/n) protocols, allowing developers to focus on building application logic.

Key Features:

RTOS Foundation: Built on FreeRTOS, enabling standard real-time operating system
features such as multi-tasking, semaphores, queues, and software timers.

Connectivity: Simplified APIs for Station (STA), Access Point (AP), and Mesh networking
modes, along with a full networking stack (LwlIP).

Peripheral Access: Drivers for UART, SPI, GPIO hardware interfaces.

Application Services: Integrated support for MQTT, and Security protocols (SSL/TLS).

Development Environment:

Compiler: IAR Embedded Workbench for ARM (v7.2 or higher) is required for
compilation.

Tools: The "Amped RF Term(http://download.ampedrftech.com/)" utility is provided for
firmware flashing and serial debugging.

Resources: The user application has access to approximately 45KB of Flash memory for
code storage.

http://download.ampedrftech.com/

WLAN API Reference Guide

Contents
(IO A= YT 0
2. MOGUIE APIS ... nnnnnnnn 4
2.1 SigNal FrameEWOTKouuiiiiei e e e e e e e e 4
2.1.1 Subscription Modes & WOrkflIOWS..........oooeiiieiiiiiieeeec e 4
P B B - =] (B Ted (8] = P 6
2t R B P 9
2.1.4 Usage EXampPIe.......coooiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 9
2.2 Common Return COAEScoooeiiiiieeeeeeeeeeeeeee e 10
2.3 C0NNECE APIS ... 11
P2 Bt BV = o Y = o= o 1 PP 11
2.3.2WIAN_StA_JOIN() ceeeiriiiiieee e 12
2.3.3 Wlan_sta StatuS()ueeii i 14
2.3.4 WIAN_Sta_UNJOIN() +eerrieiiiiiiiiiiiiiiiiiieieee ettt ettt e e e e e e e e e e eeees 14
2.3.5Wlan_sta CONNECH()oii i 14
2.3.6 wlan_sta_disconnect() (Unsupported)..........ccccoeeeiiiiiiiiiiiiiiiieeeeeeeeeee e 15
2.3.7 wlan_ap_showNetwork() (Unsupported)ccccoevrriiiiiiiiiiieieeeeeeeiee e 16
2.4 Transmit-APls (Unsupported)ooovveeiiiieieeeeeeee e 16
2.4.1 wlan—sta—send() (UnNsSupported).........ccooormmiiiiiie i 16
2.5 Configuration APIS ... 17
2.5.1 wlan_get _device NamME()oeuruueiiiii e 18
2.5.2wlan_set device NAME()covvuuiiiiie e 18
2.5.3 wlan_get_mac_addreSS()cuuueueeiimiiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 19
2.5.4 wlan_set Mac_addreSS()ccuuuuriiiiii e 19
2.5.5wlan_get dhcp MOde()......coevmmiuiiiiiie e 20
2.5.6 wlan_set_ dhCp_MOAE()ceeeiiieeiiiie e 20
2.5. 7 wlan_get ip_iNFO() ..uuueeeiei i 21
2.5.8 wlan_set ip INFO() .uuuuueieiieei e 22
2.5.9 wlan_get_sleep_mode() (Unsupported)cccoeeeeiiiiiiiiiiiiiieieeeeeeeee e 23
2.5.10 wlan—set—sleep—mode) (Unsupported)ccceevrririiiiiiiiieeeeeeeeeeee e 23
2.5.11 wlan_get_operation_mode().......ccuveiriiriiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeee e 24
2.5.12 wlan_set_operation_mMode()......cccoeeeeeiiiiiiiiiiiee e 24
2.5.13 wlan_config_iNfO()euueriiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeee e 25
Page 1 of 62

www.ampedrftech.com

WLAN API Reference Guide

2.5.14 wlan_get_config_DBYID()......ccueeiiiiimiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 31
2.6 SYSIEM APIS ..o ———————————— 32
2.6.1 WIAN_FeSTAM() ..oeeeeeeeiee e 32
2.6.2 WIAN_PIINTF() «eeeeeieeeiieiiieeei e 32
2.7 DIIVEE APIS. .. 33
2.7.1 wlan_set_uart_connect_mode() (Unsupported)ooveeeeiiiiiiiiiiiiiieeeeeeee, 33
2.7.2 WIaN_Uart_SENA() . ..ceeeeeiiiiiiiiiiiiiiiiieeee ettt 34
2.7.3 wlan_set_uart_baudrate() (Unsupported)cccoovrimiiiiiiiiiiiieiieeee e, 34
2.7.4 wlan—spiiait) (UNSUPPOrtEd)eeeii e 35
2.7.5 whan—spi—shd—bytes) (Unsupported)........ccccceverriiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee 35
2.7.6 wlan_spi_sndrcv_bytes() (Unsupported).........cccooeviriiiiiiiiiiiiieeeeeeeeicee e, 35
2.7.7 wlan—spi—rev—bytes() (Unsupported)...........ceeieieiiiiiiiiiccie e, 36
2.7.8 WIaN_gPio_CONTIG() «eveeeereeeeiiiiiiiiiiiiiiiiie ettt 36
2. 7.9 WIAN_gPI0_ SEE() .eeerrriiiiii i 37
2.7.10 WIAN_gPI0_ GET()eerrrrnneeeeeeei i 37
P2 T I 1= N e 1 37
2.8.1 wlan_timer_Config().....ccceeeriiiiiiii e 38
2.8.2wlan_timer_start()coooooe i 39
A TG I Y= o T (10 1=] (] o () TP 39
2.8.4 wlan_timer_deStrOY()......uuueeeeiiiiiiiiiiiiiiiiiiieee ettt 39
2.8.5 Example: TIMer USAQE......ccouuuiiiiiiiii ettt e e e e e e e eees 40
2IOMQTT APIS ... 41
2.9.1 wlan_mqtt_set_SErver ip() ..ceeeeuoiie e 42
2.9.2 wlan_mqtt_set_server Port()......cccoeeeeeeiiiiiiiiee e 42
2.9.3 wlan_mqtt_set_client _id().......cuuueieiieiiiiii e 43
2.9.4 wlan_mqtt_set_keep _aliVe().....uuuuoiieeeeiiieiie e 43
2.9.5 wlan_mqtt_set_ uSerNamMe()........ccceveiiiiiiiiiiiiie e 44
2.9.6 wlan_mqtt_set_pasSWOrd()uoiieeeeiiiiiiiiie e 44
2.9.7 wlan_mqtt_set_pub topiC()cuureriiiiiiiiiie 45
2.9.8 wlan_mqtt_set_sub_toPIC() ..evverreeriiieiiiiiiiiiieiieeeeeeeee e 45
2.9.9 wlan_mQatt_Set_ QOS() . .ceeeeeiiiiiiiiiiie e 46
2.9.10 wlan_mqtt_set_auth_type()cccoeeerieriiiiicce e 47
2.9.11 wlan_mqtt_set_Ca_Cert().......uuummiimmmiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeee e 47
Page 2 of 62

www.ampedrftech.com

WLAN API Reference Guide

2.9.12 wlan_mqtt_set_client_Cert() ... 48
2.9.13 wlan_mqtt_set_client KeY()......ooeieiieiiieecieee e 48
2.9.14 wlan_mQatt_ CONNECH()ccceieiiiiiie e 49
2.9.15 wlan_mQqtt_ diSCONNECH() ...eeveeeeiiiiee e 50
2.9.16 wlan_mqtt_get status()........ouueeiiiiiiiiiie 50
2.9.17 Monitoring MQTT CONNECLIONcoeviiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 51
2.9.18 wlan_matt_PUDBIISN() ...ceee oo 51
2.9.19 wlan_mqatt_SUDSCHDE()cevereiiiiii e 52
2.9.20 wlan_mqtt_unsubSCrDE()evvveuiiieeeiieeee e 52
2.9.21 MQTT CoNNECHiON SEQUENCE......ccoieeeieeeeiiicee e 53
2.10 Mesh Networking Overview & Configurationcccccooviiiiiiiieiicee e, 55
P20 O Bt =T T P 55
2.10.2 Key Configuration Variables...............ciiiiiiiiiiiiiieeeeeeeee 55
2.10.3 wlan_mesh_get Status()couuueiiiiiieiieece e 56
2.10.4 Monitoring Mesh Connection............cooooiiiiiiii i 56
2.10.5 Configuration WOrKflOWccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e 57
2.10.6 Example: Mesh ConNECLONccccooiiiiiiiicicee e 57
3. Demo Application Implementation GUIdecooeimiiiiiiiiiiiee e, 58
B T B =T YT R 59
3.2 Implementation LOGIC.........cooo i 59
3.2 1 INIIAlIZALION ... 59
3.2.2 Subscribing t0 SigNalS........ccoviiiiiiiiiiiiiiiiiiiiie e 59
B T2 T I U= V=T o) o T) o J P 60
3.3 Signal Processing (msg_processed_for test)ccccviiiiiiiiiiiiiie 60
Page 3 of 62

www.ampedrftech.com

WLAN API Reference Guide
2. Module APIs
2.1 Signal Framework

In the WF88-M SDK, many operations (such as Wi-Fi scanning, Wi-Fi joining, mesh joining,
and MQTT messaging) are completed asynchronously. If applications rely on polling, they
add latency and complexity. For this reason, the SDK exposes a unified Signal Framework
so your application can react to key events at the right time. This framework is the basis for
later sections such as Connect, MQTT, and Mesh.

This section describes the Signal Framework and its Publish-Subscribe model for delivering
system events (e.g., Wi-Fi status changes, MQTT messages, UART data) to your
application.

The Signal Framework utilizes FreeRTOS Queues to dispatch events. The application
creates a queue and subscribes to specific event IDs. When an event occurs, the SDK posts
a sdk_signal_t message to the registered queue, which the application task can then
process in an event loop.

2.1.1 Subscription Modes & Workflows

The SDK supports two distinct subscription modes, determining how signals are routed to
the application and the system's default handlers.

2.1.1.1 REPEAT Mode

o Description: The signal is delivered to the subscriber's queue, and the system also
routes it to the default system handler. Both share the same payload pointer.

e Use Case: Non-intrusive monitoring (e.g., logging WiFi status) where the system must
still perform its standard operations.

¢ Memory Management: Do NOT free msg.data(see struct sdk_signal_t). The system's
default handler owns the data and will free it after processing. Freeing it in the
application will cause a system crash.

e Flow: Event -> User Queue (App reads) -> System Queue (System reads & frees)

Page 4 of 62
www.ampedrftech.com

WLAN API Reference Guide

User Application SDK Signal Dispatcher Default System Handler

1. Subscription Phase

wlan_sdk_subscribe(SIG, Q, REPEAT)

Ll

2. Event Dispatch

par
Post Signal (Shared Ptr)

F 3

Post Signal (Shared Ptr)

L J

3. Processing

Read Data (Do NOT Free)

System Action -> Free Data

<

User Application SDK Signal Dispatcher Default System Handler

2.1.1.2 REDIRECT Mode

o Description: The signal is delivered ONLY to the subscriber's queue. The default system
handler is skipped.

e Use Case: Taking full control of a function (e.g., custom MQTT handling), effectively
disabling the default system behavior for that event.

o Memory Management: App MUST free msg.data(see struct sdk_signal_t). Since the
system handler is skipped, ownership of the allocated payload is transferred entirely to
the application.

e Flow: Event -> User Queue (System Skipped)

Page 5 of 62
www.ampedrftech.com

User Application

WLAN API Reference Guide

SDK Signal Dispatcher Default System Handler

1. Subscription Phase

wlan_sdk_subscribe(SIG, Q, REDIRECT)

-
Ll

2. Event Dispatch

Post Signal (Transfer Ownership)

F 3

3. Processing

Process Data -> Free Data

<

User Application

2.1.2 Data Structures

2.1.2.1 struct sdk_signal_t

Default Handler SKIPPED

SDK Signal Dispatcher Default System Handler

Represents the message object sent to the application queue.

Field Type Description

id uint16_t | Unique identifier for the event (e.g.,
SIG_SDK_WLAN_CONNECTED).

source uint8_t Reserve For Use

data void* Pointer to the event payload (specific structure depends on the
Signal ID).

data_len | uint16_t | Length of the payload data in bytes.

2.1.2.2 Signal IDs (Event List)
This section details the available system signals, their trigger conditions, and associated

payload data structures.

The following table summarizes the available signals:

Signal ID Description

SIG_SDK_SYS INIT_DONE System initialization is complete.

SIG_SDK_JOIN_SUCESS Asynchronous AP connection request succeeded
(Associated).

SIG_SDK_JOIN_FAILED Asynchronous AP connection request failed
(Timeout/Auth).

Page 6 of 62

www.ampedrftech.com

WLAN API Reference Guide

Signal ID Description
SIG_SDK_WLAN_CONNECTED Wi-Fi link established (Handshake complete) or
Mesh joined.
SIG_SDK_WLAN_DISCONNECTED | Wi-Fi link lost or terminated.
SIG_SDK_WLAN_IP_CHANGED IP address assigned or updated.
SIG_SDK_MQTT_CONNECT_OK MQTT Broker connected.
SIG_SDK_MQTT_DISCONNECT MQTT Broker disconnected.
SIG_SDK_MQTT_DATA DOWN MQTT message received.
SIG_SDK_UART_DATA_RX UART data received.

2.1.2.2.1 SIG_SDK_SYS_INIT_DONE

o Description: Notifies the application that the SDK initialization is fully complete and
application-layer logic processing can now begin.

o Trigger: Triggered exactly once when the system startup sequence is finished.

e Payload: NULL

2.1.2.2.2 SIG_SDK_JOIN_SUCESS

o Description: (STA Mode Only) Indicates that the asynchronous wlan_sta_join() request
has successfully completed and the device has associated with the specified Access
Point.

e Trigger: Triggered after calling wlan_sta_join() when the authentication and association
handshake with the AP is successful.

o Payload: NULL

¢ Note: This signal confirms the initial connection. For subsequent link maintenance,
monitor SIG_SDK_WLAN_DISCONNECTED.

2.1.2.2.3 SIG_SDK_JOIN_FAILED

e Description: (STA Mode Only) Indicates that the asynchronous wlan_sta_join() request
has failed to establish a connection.

o Trigger: Triggered after calling wlan_sta_join() if the connection attempt fails for any
reason, such as authentication failure (incorrect credentials), Access Point not found, or
internal timeout.

o Payload: NULL

o Note: The SDK does NOT retry automatically. The application layer must explicitly call
wlan_sta_join() again to retry.

2.1.2.2.4 SIG_SDK_WLAN_CONNECTED

e Description: Indicates that the Wi-Fi connection has been established.
e Trigger:

o STA Mode: Triggered after successfully establishing a connection and completing
the handshake with an Access Point.

o Mesh Point (MP) Mode: Triggered only after the device has successfully joined the
mesh network and established a connection to the Root Node. Note: This signal will
not be triggered if the device connects to a mesh network that does not currently
have a root node.

Page 7 of 62
www.ampedrftech.com

WLAN API Reference Guide
o Payload: NULL
2.1.2.2.5 SIG_SDK_WLAN_DISCONNECTED

e Description: Indicates that the Wi-Fi connection has been lost or terminated.
e Trigger:

o STA Mode: Triggered when the association with the Access Point is terminated (e.g.,
due to beacon loss, de-authentication by AP, or manual disconnection).

o Mesh Point (MP) Mode: Triggered when the device loses its connection to the mesh
network or its path to the Root Node is severed.

e Payload: NULL
2.1.2.2.6 SIG_SDK_WLAN_IP_CHANGED

o Description: The network interface's IP address has been assigned, updated, or lost.
e Trigger: DHCP lease obtained/renewed
o Payload: NULL (Use wlan_get_ip_info() to retrieve the current IP configuration).

2.1.2.2.7 SIG_SDK_MQTT_CONNECT_OK

o Description: The MQTT client has successfully established a connection with the Broker.
e Trigger: Received CONNACK with success code from the Broker.
o Payload: NULL

2.1.2.2.8 SIG_SDK_MQTT_DISCONNECT

e Description: The MQTT client connection has been terminated.

e Trigger: TCP connection loss, keep-alive timeout, or disconnection initiated by the
Broker.

e Payload: NULL

2.1.2.2.9 SIG_SDK_MQTT_DATA_DOWN

e Description: A message has been received on a subscribed MQTT topic.
e Trigger: Broker publishes a message to the device.
o Payload: Pointer to the message data.

2.1.2.2.10 SIG_SDK_UART_DATA_RX

o Description: Data has been received via a UART interface.
o Trigger: UART receive interrupt or DMA transfer completion.
o Payload: app_uart_rx_event_t * (Refer to the definition below).

2.1.2.2.10.1 Struct app_uart_rx_event_t Definition

Member | Type Description
len uintl6_t The number of bytes received in this event.
data uint8_t[@] | Flexible array member pointing to the received data buffer.

typedef struct {
uintle t len;

Page 8 of 62
www.ampedrftech.com

WLAN API Reference Guide
uint8 t datal[9];

} app_uart_rx_event_t;

2.1.3 APIs

2.1.3.1 wlan_sdk_subscribe()

Registers a FreeRTOS queue to receive specific system signals.

Prototype:

int wlan_sdk_subscribe(int signal_id, QueueHandle_ t queue, int mode)
Returns Parameters
0: Success signal_id: The Signal ID of the event to subscribe to.

Non-zero: Error | queue: Handle of the FreeRTOS queue to receive messages.

mode: Subscription mode (see below).

Subscription Modes:

2.1.

SDK_SUB_MODE_REPEAT: The application receives the signal, and the SDK's internal
default handler continues to process it. App must NOT free msg.data. see REPEAT
Mode.

SDK_SUB_MODE_REDIRECT: The application receives the signal, but the SDK's default
internal handler is skipped. App MUST free msg.data. See REDIRECT Mode.

4 Usage Example

The following example demonstrates how to create an application task, subscribe to system

events, and process them in a loop.
void vAppMainTask(void *pvParameters)
{
sdk_signal t msg;
QueueHandle t xAppQueue = xQueueCreate(20, sizeof(sdk signal t));
if (xAppQueue == NULL) {
printf("Error: Failed to create App Queue.\n");
return;
}
wlan_sdk _subscribe(SIG_SDK_SYS INIT DONE, xAppQueue, SDK SUB MODE_REPEA
T);
wlan_sdk_subscribe(SIG_SDK_WLAN_IP_CHANGED, xAppQueue, SDK_SUB_MODE_REP
EAT);
wlan_sdk_subscribe(SIG_SDK_MQTT_DATA_DOWN, xAppQueue, SDK_SUB_MODE_REPE
AT);
Page 9 of 62

www.ampedrftech.com

WLAN API Reference Guide

// 3. Event Processing Loop
for (53)
{
// Block indefinitely until a signal arrives
if (xQueueReceive(xAppQueue, &msg, portMAX_DELAY) == pdPASS)
{
switch (msg.id)
{
case SIG_SDK_SYS_INIT_DONE:
printf("System Initialized. Starting App logic...\n");
break;

case SIG_SDK_WLAN_IP_CHANGED:
{
ip_info_int_t ip_info;
wlan_get ip info(&ip_info);
if (ip_info.ip.addr != 0) {
printf("Network Ready. IP: %@8X\n", ip_info.ip.add

}

break;

}

case SIG_SDK_MQTT_DATA DOWN:
printf("Received MQTT Data. Length: %d\n", msg.data_le
n);
// msg.data points to the received payload buffer.
// REPEAT MODE NOTE: Do NOT free msg.data here. The sys
tem handles 1it.

// REDIRECT MODE NOTE: If using REDIRECT, you MUST call
0s_free(msg.data) here.
break;

default:
break;

}

2.2 Common Return Codes

Most APIs in this SDK return a status code of type enum result_type to indicate success
or failure. The following table describes these return values:

Value | Name Description
0 NO_ERR Success.
1 PARA_ERR Parameter Error. One or more input parameters are invalid.

Page 10 of 62
www.ampedrftech.com

WLAN API Reference Guide

Value | Name Description
2 VALUE_ERR Value Error. The configuration value is out of range or
unsupported.
3 STATUS_ERR Status Error. The device is in an incorrect state for this operation
(e.g., trying to send data when not connected).
4 CONNECT_ERR | Connection Error. Failed to establish a connection.
5 SEND_ERR Send Error. Failed to transmit data packet.
enum result_type{
NO_ERR = 0,
PARA_ERR,
VALUE_ERR,

STATUS_ERR,
CONNECT_ERR,
SEND_ERR,

}s

2.3 Connect APIs

The Connect APIs provide the necessary functions to manage Wi-Fi connectivity and data
link establishment. This involves multiple phases, from discovering available networks to
joining an Access Point and establishing peer-to-peer or socket connections.

Key functionalities include:

o Network Discovery: Use wlan_sta_scan() to find available Access Points in the area.
e AP Association: Connect to a specific AP using wlan_sta_join(), monitor the connection
status with wlan_sta_status(), or disconnect with wlan_sta_unjoin().

e AP Management: In AP mode, use wlan—ap—shewNetwork() to view currently
associated client stations. (Unsupported)

The following table summarizes the available connection APIs:

Function

Description

wlan_sta_scan() Scans for available Access Points.

wlan_sta_join()

Connects the station to a specified Access Point.

wlan_sta_status() | Retrieves the current Wi-Fi connection status.

wlan_sta_unjoin() | Disconnects the station from the current Access Point.

2.3.1 wlan_sta_scan()

Initiates a synchronous scan for available Access Points (APs) in the vicinity.

Functional Description:

o Discovery: Triggers the Wi-Fi hardware to listen for beacons and probe responses
across all supported channels.

e Synchronous Execution: The function blocks the caller while the scan is in progress. The
registered callback function is executed within the context of this call before the function

returns.

Page 11 of 62

www.ampedrftech.com

WLAN API Reference Guide

o Callback Context: The callback receives a pointer to a linked list of scan_data_t
structures, each representing an identified AP.

Prototype:

u8_t wlan_sta_scan(scan_callback_t *scan_done_cb)

Precondition: DeviceMode must be set to STA or AP_STA (refer to
wlan_set_operation_mode).

Returns Parameters

result_type: scan_done_cb: Pointer to a user-defined
NO_ERR (0): Scan completed callback function. Refer to scan_callback_t for
successfully. details.

STATUS_ERR: Operation not permitted
in current mode (e.g., pure AP mode).
PARA_ERR: Invalid callback pointer.

Example Usage:

void my_scan_cb(const scan_data_t *pScandata) {
const scan_data_t *curr = pScandata;
while(curr) {
wlan_printf("Found AP: %s (RSSI: %d)\n", curr->ssid, curr->signal);
curr = curr->next;

wlan_sta_scan(my_scan_cb);

2.3.1.1 Struct scan_data_t Definition

Member | Type Description

signal int Received Signal Strength Indication (RSSI) in dBm.
freq int Channel frequency in MHz.

bssid uint8_t[6] | BSSID (MAC Address) of the Access Point.

ssid char[32] SSID (Network Name), null-terminated string.

next void* Pointer to the next scan_data_t entry in the linked list.

typedef struct scan_data_ s{
int signal;
int freq;
uint8 t bssid[6];
char ssid[32];
void *next;
} scan_data_t;

2.3.2 wlan_sta_join()

This function initiates an asynchronous request to join a specified Access Point (AP).

Page 12 of 62
www.ampedrftech.com

WLAN API Reference Guide

Functional Description:

o Asynchronous Request: The function returns immediately after validating parameters
and initiating the join sequence. A return value of NO_ERR (0) indicates the request has
been successfully accepted by the Wi-Fi stack, but the connection is NOT yet
established.

e Status Monitoring (Required):

o Because the operation is asynchronous, the final outcome of the join request is
communicated via the Signal Framework:
e Success: The SIG_SDK_JOIN_SUCESS signal is triggered when the association
is successful.
e Failure: The SIG_SDK JOIN_FAILED signal is triggered if the connection
attempt fails.

o Alternatively, the application can continue to use wlan_sta_status() (polling) to verify

the connection.

e Connection Maintenance (No Auto-Reconnect):

o The SDK does NOT perform automatic reconnection for this API.

o If the initial request fails, or if the Wi-Fi link is lost later (detected via polling or the
SIG_SDK_WLAN_DISCONNECTED signal), the application layer must explicitly call
wlan_sta_join() again to re-establish connectivity.

e Retry Strategy: If the API returns an error or the connection drops, it is recommended to
wait for a backoff period (e.g., 2+ seconds) before retrying.

Prototype:

u8_t wlan_sta_join(wlan_ap_t *pAP)

Precondition: DeviceMode must be set to STA or AP_STA.

Returns

Description

NO_ERR (0)

Request accepted successfully. Monitor status to confirm connection.

CONNECT_ERR (4)

Request failed (e.g., Stack busy). Retry after a delay.

PARA_ERR

Invalid parameter.

2.3.2.1 Struct wlan_ap_t Definition

Member Type Description
ssid char[32] | The SSID (Network Name) of the target Access Point.
password | char[64] | The password/passphrase for WPA/WPA2 authentication.

typedef struct wlan_ap s{

char ssid[32];

char password[64];

} wlan_ap t;

Page 13 of 62

www.ampedrftech.com

WLAN API Reference Guide
2.3.3 wlan_sta_status()

Retrieves the current Wi-Fi connection status.
Functional Description:

o Status Check: Returns the internal state indicating whether the device is currently
associated (joined) with an Access Point (AP).

o Polling Usage: Commonly used in a loop (with delay) after calling wlan_sta_join() to
confirm when the connection is fully established and stable.

Prototype:

bool wlan_sta_status(void)

Returns Parameters

true: Connected (Joined). | void
false: Not connected.

2.3.4 wlan_sta_unjoin()

Disconnects the station from the currently associated Access Point (AP).
Functional Description:

o Disassociation: Terminates the active Wi-Fi link with the AP and transitions the stack to
an idle state.

e Synchronous Execution: This function blocks until the disassociation request is
processed by the WLAN stack.

o Status Update: After this function returns, wlan_sta_status will return false.

Prototype:

void wlan_sta unjoin(void)

Precondition: Device must be currently joined to an AP (refer to wlan_sta_join); otherwise,
the function has no effect.

Returns Parameters

void void

2.3.5 wlan_sta_connect()

Establishes a logical network connection (UDP or TCP) with a remote station after
successfully joining an Access Point.

Functional Description:

e Protocol Support: Supports WLANCONN_UDP, WLANCONN_TCP_CLIENT, and
WLANCONN_TCP_SERVER.

e Logical Link: Sets up the internal socket structures and background data receive tasks.

e Synchronous Execution: This function blocks until the logical connection is established
or fails.

e Multi-Connection: The SDK supports multiple concurrent socket connections (refer to
system limits).

Page 14 of 62
www.ampedrftech.com

WLAN API Reference Guide
Prototype:

u8_t wlan_sta_connect(u8_t protocol, wlan_station_t *pSta)

Precondition: Device must be currently joined to an AP (refer to wlan_sta_join); otherwise,
the function has no effect and will return an error status.

Returns Parameters

NO_ERR (0): Connected protocol: Connection type: WLANCONN_UDP,
successfully. WLANCONN_TCP_CLIENT, or WLANCONN_TCP_SERVER.
CONNECT_ERR (4): pSta: Pointer to a wlan_station_t structure defining
Connection failed. local/remote ports, remote IP, and the receive callback.
STATUS_ERR (3): Device not

ready (not joined).

2.3.5.1 Struct wlan_station_t Definition
Used for setting up UDP or TCP connections.

Member Type Description
local struct Local IP address and Port configuration.
station_info_s
remote struct Remote IP address and Port configuration.
station_info_s
rx wlan_callback Callback function pointer triggered when data is
received.

Sub-struct station_info_s:

Member | Description
ipAddr IPv4 address (integer format).
portid TCP/UDP Port number.

struct station_info_ s {
uint32_t ipAddr;
uintl6e_t portid;

}s

typedef struct wlan_station_s {
struct station_info_s local;
struct station_info_s remote;
wlan_callback rx;

} wlan_station_t;

2.3.6 wlan_sta_disconnect() (Unsupported)

Disconnects a specific logical connection (socket) with a remote peer.
Functional Description:

Page 15 of 62
¢ www.ampedrftech.com

WLAN API Reference Guide

e Targeted Disconnection: Closes the connection identified by the remote IP address and
protocol type.
e Resource Release: Frees the internal socket resources associated with the connection.

Prototype:

void wlan_sta_disconnect(u32_t ipaddr, u8_t protocol)

Precondition: A connection must already be established via wlan_sta_connect.

Returns Parameters

void ipaddr: The IPv4 address of the remote peer (in network byte order).
protocol: The protocol type of the connection to close (WLANCONN_UDP,
WLANCONN_TCP_CLIENT, WLANCONN_TCP_SERVER).

2.3.7 wlan_ap_showNetwork() (Unsupported)

show the station list that already connected to AP
Prototype:

void wlan_ap_showNetwork(void)

Precondition: DeviceMode must be set to AP or AP_STA.

Returns Parameters

void void

2.4 Transmit-ARls (Unsupported)

The following list contains all transmit APIs.

1. wlan_sta_send()

2.4 1 wlan—sta—send() (Unsupported)

Sends a data packet to a connected remote station.
Functional Description:

¢ Data Transmission: Transmits the provided data buffer to the target IP address using the
established protocol (UDP/TCP).
¢ Routing: The ipaddr parameter determines the destination.

e Blocking Behavior: Depending on the protocol and socket state, this call may block until
the data is buffered for transmission.

Prototype:
u8_t wlan_sta_send(u32_t ipaddr, u8 t *pBuf, ulée_t len)

Precondition: A socket connection must be established via wlan_sta_connect.

Page 16 of 62
www.ampedrftech.com

WLAN API Reference Guide

Returns Parameters
NO_ERR (0): Success. ipaddr: The IPv4 address of the target recipient (network
SEND_ERR: Transmission byte order).

failed.
PARA_ERR: Invalid
parameter.

pBuf: Pointer to the data buffer to send.
len: Length of the data in bytes.

2.5 Configuration APIs

This section details the APIs used to configure the fundamental parameters of the Wi-Fi
module. These APIs allow the application to manage device identity, network settings,
power consumption, and operating modes.

The Configuration APIs can be broadly categorized into the following groups:

Device Identification: APIs to get or set the device name (wlan_get/set_device name)
and MAC address (wlan_get/set_mac_address).

Network Configuration: APIs to manage IP settings, including enabling/disabling DHCP
(wlan_get/set_dhcp_mode) and configuring static IP addresses

(wlan_get/set_ip info

(UnsuBorted) -

Operating Modes: APIs to switch between Station (STA), Access Point (AP), or
concurrent (AP_STA) modes (wlan_get/set_operation_mode).

Advanced Configuration: The versatile wlan_config_info() API provides access to a wide
range of internal system variables (var_id) for fine-tuning the stack behavior.

Important Note:
Many configuration changes, especially those related to operating modes, MAC addresses,
and static IP settings, require a system restart (wlan_restart()) to take effect. Please refer to
the specific API descriptions for details.

The following table summarizes the available configuration APIs:

Function

Description

wlan_get_device_name()

Retrieves the module's identification string.

wlan_set_device_name()

Sets the module's identification string.

wlan_get_mac_address|()

Retrieves the 6-byte hardware MAC address.

wlan_set_mac_address()

Sets a new MAC address (Requires 12-character HEX
string).

wlan_get_dhcp_mode()

Checks if DHCP is enabled or if the module uses static IP
settings.

wlan_set_dhcp_mode()

Enables or disables DHCP mode.

wlan_get_ip_info()

Retrieves the current IP, Netmask, and Gateway in integer
format.

wlan_set_ip_info()

Configures manual static IP settings when DHCP is
disabled.

Page 17 of 62

www.ampedrftech.com

WLAN API Reference Guide

Function Description

wlan—get-—sleep—mode) (Unsupported) Retrieves the current power-save sleep
mode configuration.

wlan—set_sleep—mode() (Unsupported) Configures the module's power-save

behavior.

wlan_get operation_mode()

Retrieves the current Wi-Fi mode.

wlan_set_operation_mode()

Configures the Wi-Fi operating mode.

wlan_config_info()

Accesses or modifies internal system variables using
specific IDs.

wlan_get _config_bylD()

Retrieves the current value of a system configuration
variable by its ID.

2.5.1 wlan_get_device_name()

Retrieves the module's identification string (Device Name).

Functional Description:

e Configuration Access: Reads the device name string currently stored in the system

configuration variables.

¢ Identity: This name is often used as the identification string within the system

configuration.

Prototype:

char* wlan_get device_name(void)

Returns

Parameters

char*: Pointer to the null-terminated string containing the device name. | void

2.5.2 wlan_set_device_name()

Sets the identification string (Device Name) for the module.

Functional Description:

e Persistent Storage: Updates the "DeviceName" variable in the non-volatile system

configuration.

e Length Limitation: The name string is limited to a maximum of 20 characters (case

sensitive).

o Effect: Changes take effect only after a system reboot.

Prototype:

u8_t wlan_set device name(char* pName)

Note: A system restart (wlan_restart) is required for the new name to take effect.

Returns

Parameters

NO_ERR (0): Success.
PARA_ERR: pName is NULL.

pName: Pointer to a null-terminated string containing
the new device name.

Page 18 of 62

www.ampedrftech.com

WLAN API Reference Guide

Returns Parameters

VALUE_ERR: String too long or
storage error.

Example Usage:

if (wlan_set_device_name("MyACHModule") == NO_ERR) {
wlan_printf("Name set successfully. Rebooting...\n");
wlan_restart();

}

2.5.3 wlan_get_mac_address()

Retrieves the current MAC address of the Wi-Fi interface.
Functional Description:

o Data Retrieval: Copies the 6-byte hardware MAC address from the system into the
provided buffer.

o Format: binary array of 6 bytes.

Prototype:

void wlan_get mac_address(u8_t* pMac)

Returns Parameters

void pMac: Pointer to a 6-byte unsigned char array (u8_t mac[6]) where the
address will be stored.

Example Usage:

unsigned char mac[6];

wlan_get mac_address(mac);

wlan_printf("MAC Address: %02X:%02X:%02X:%02X:%02X:%02X\n",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);

2.5.4 wlan_set_mac_address()

Sets a new MAC address for the Wi-Fi interface using a hexadecimal string.
Functional Description:

e Persistent Storage: Configures the hardware MAC address in the system's non-volatile
memory.

e Format Requirement: This API expects a 12-character hexadecimal string (e.g.,
"00043E112233"). Do NOT pass a 6-byte binary array.

o Effect: A system restart is required for the new MAC address to be applied to the
hardware.

Prototype:

void wlan_set_mac_address(u8_t* pMac)

Note: This function triggers an automatic system restart. Execution will stop here.

Page 19 of 62
www.ampedrftech.com

WLAN API Reference Guide

Returns Parameters

void pMac: Pointer to a 12-character string representing the MAC address in hex
(e.g., "00043E212345").

Example Usage:

wlan_set_mac_address("00043E112233");
wlan_printf("MAC address updated. Rebooting system automatic...\n");

2.5.5 wlan_get_dhcp_mode()

Retrieves the current DHCP configuration mode.

Functional Description:

e Returns whether the module is configured to obtain an IP address automatically via
DHCP or use a static IP configuration.

o If this returns false, The module relies on manual IP configurations assigned via
wlan_set_ip_info().

Prototype:

bool wlan_get dhcp_mode(void)

Returns Parameters

true: DHCP is enabled (Automatic IP). | void
false: DHCP is disabled (Static IP).

Example Usage:

if (wlan_get dhcp _mode()) {
wlan_printf("DHCP is enabled.\n");
} else {
wlan_printf("Using static IP configuration.\n");

}

2.5.6 wlan_set_dhcp_mode()

Enables or disables DHCP for automatic IP address retrieval.
Functional Description:

o Mode Switch: Configures the system to either use a DHCP server to obtain IP settings or
rely on manually configured static IP values.

o Persistent Storage: The setting is saved to the non-volatile system configuration.
o Effect: A system restart is required for the change to take effect.

Prototype:
u8_t wlan_set_dhcp_mode(bool mode)

Note: A system restart (wlan_restart) is mandatory for the mode switch to be applied.

Page 20 of 62
www.ampedrftech.com

WLAN API Reference Guide

Returns Parameters

NO_ERR (0): Success. mode: true to enable DHCP; false to disable (use Static
VALUE_ERR: Storage IP).

error.

Example Usage:

// Disable DHCP to use static IP

if (wlan_set_dhcp_mode(false) == NO_ERR) {
wlan_printf("DHCP disabled. Restarting to apply static IP...\n");
wlan_restart();

}
2.5.7 wlan_get_ip_info()

Retrieves the current IP configuration (IP address, Netmask, and Gateway) in integer
format.

Functional Description:

o Data Access: Copies the current active IP settings into the provided structure.
o Format: The information is returned as 32-bit integers within the ip_info_int_t structure.

Prototype:
void wlan_get ip info(ip_info_int_t* pIP_int)

Returns Parameters

void pIP_int: Pointer to an ip_info_int_t structure where the data will be stored.

Example Usage:

#include "lwip/ip_addr.h"

ip_info_int_t ip_info;
wlan_get_ip_info(&ip_info);

// Use LwIP utility function to convert IP to a dotted-decimal string

// Note: ip4addr _ntoa is not thread-safe (uses a static buffer).
wlan_printf("IP: %s\n", ip4addr_ntoa((const ip4_addr_ t*)&ip _info.ip));
wlan_printf("Netmask: %s\n", ipdaddr_ntoa((const ip4_addr_t*)&ip_info.netma
sk));

wlan_printf("Gateway: %s\n", ip4addr_ntoa((const ip4 addr_ t*)&ip_info.gatew
ay));

2.5.7.1 Struct ip_info_int_t Definition

Member Type Description

ip struct ip_address The IP address of the module.
netmask struct ip_address The subnet mask of the local network.
gateway struct ip_address The default gateway address.

Page 21 of 62
www.ampedrftech.com

WLAN API Reference Guide

Sub-struct ip_address:

Member | Type Description

addr uint32_t | 32-bit unsigned integer representing the IPv4 address.

struct ip_address{
uint32_t addr;

}s

typedef struct ip_info_int_s{
struct ip_address ip;
struct ip_address netmask;
struct ip_address gateway;
} ip_info_int_t;

2.5.8 wlan_set_ip_info()

Configures static IP settings (IP address, Netmask, and Gateway) for the module.
Functional Description:

e Static Configuration: Sets the manual IP parameters. These settings are used only when
DHCP is disabled.

e Format: Parameters are passed via the ip_info_str_t structure as dotted-decimal
strings (e.g., "192.168.1.10").

e Persistent Storage: Settings are saved to non-volatile memory.

o Effect: A system restart is required for the new IP settings to be applied.

Precondition: DHCPMode must be set to false (refer to wlan_set_dhcp_mode()); otherwise,
these settings will be ignored. A system restart (wlan_restart()) is required after calling this
function.

Prototype:

u8_t wlan set ip info(ip_info str t ip_str)

Returns Parameters

NO_ERR (0): Success. ip_str: An ip_info_str_t structure containing the IP,
VALUE_ERR: Storage error or Netmask, and Gateway strings.

invalid format.

Example Usage:

ip_info_str_t my ip;

wlan_set_dhcp_mode(false);

strncpy(my_ip.ip, "192.168.1.50", 16);
strncpy(my_ip.netmask, "255.255.255.0", 16);
strncpy(my ip.gateway, "192.168.1.1", 16);

Page 22 of 62
www.ampedrftech.com

WLAN API Reference Guide

if (wlan_set_ip_info(my_ip) == NO_ERR) {
wlan_printf("Static IP configured. Restarting...\n");
wlan_restart();

}
2.5.8.1 Struct ip_info_str_t Definition
Member | Type Description
ip char[16] | IP address as a string (e.g., "192.168.1.10").

netmask | char[16] | Subnet mask as a string (e.g., "255.255.255.0").
gateway | char[16] | Gateway address as a string (e.g., "192.168.1.1").

typedef struct ip_info_str_s{
char ip[16];
char netmask[16];
char gateway[16];

} ip_info_str_t;

2.5.9 wlan_get_sleep_mode() (Unsupported)

Get the module sleep mode
Prototype:

sleep_mode_t wlan_get sleep_mode(void)

Returns Parameters

sleep_mode t| void

2.5.10 wlan—set_sleep—mode() (Unsupported)
Set the module sleep mode
Prototype:

u8_t wlan_set_sleep_mode(sleep_mode_t mode)

Returns Parameters

NO_ERR (0): Success. sleep_mode_t (see below)
VALUE_ERR: Storage error or invalid format.

2.5.10.1 Enum sleep_mode_t Definition

Value Name Description

0 NO_SLEEP Active mode. No power saving enabled.

1 SHALLOW_SLEEP Light sleep mode. Fast wake-up latency.

2 DEEP_SLEEP Deep sleep mode. Lowest power consumption.
3 SHALLOW_DEEP_SLEEP | Mixed/Adaptive sleep mode.

Page 23 of 62
www.ampedrftech.com

WLAN API Reference Guide

typedef enum sleep mode e{
NO_SLEEP,
SHALLOW_SLEEP,
DEEP_SLEEP,
SHALLOW_DEEP_SLEEP

} sleep_mode_t;

2.5.11 wlan_get_operation_mode()
Retrieves the currently active Wi-Fi operating mode.
Functional Description:

o Mode Retrieval: Returns the mode the Wi-Fi stack is currently running in.
o Modes: Possible values include STA, AP, AP_STA, and for Mesh operations, MP (Mesh
Point) or AP_MP (Access Point + Mesh Point).

Prototype:

operate_mode_t wlan_get_operation_mode(void)

Returns Parameters
operate_mode_t: The current mode (refer to operate_mode t). | void

Example Usage:

operate_mode_t mode = wlan_get operation_mode();
if (mode == STA) {

wlan_printf("Module is running in Station mode.\n");
}

2.5.12 wlan_set_operation_mode()

Sets the Wi-Fi operating mode for the module.
Functional Description:

¢ Mode Configuration: Switches the module between Station (STA), Access Point (AP),
Concurrent (AP_STA), or Mesh (MP/AP_MP) modes.

e Persistent Storage: The mode is saved to the system configuration.
Effect: This function triggers an automatic system restart upon successfully saving the
new mode configuration.

Note: The system reboots immediately after a successful call to re-initialize the Wi-Fi stack.
Code execution stops at this point.

Prototype:

u8_t wlan_set operation_mode (operate_mode t mode)

Returns Parameters

NO_ERR (0): Success (system will reboot). mode: Target operate_mode_t value.
VALUE_ERR: Invalid mode or storage error.

Example Usage:

Page 24 of 62
www.ampedrftech.com

WLAN API Reference Guide

if (wlan_set_operation_mode(AP) == NO_ERR) {
wlan_printf("This line will not be reached.\n");

¥
2.5.12.1 Enum operate_mode_t Definition
Value Name Description
0 STA Station Mode. Device connects to an Access Point.
1 AP Access Point Mode. Device acts as an AP for others.
2 AP_STA | Concurrent Mode. Device acts as both STA and AP.
3 MP Mesh Point Mode. Device participates in a mesh network.
4 AP_MP Concurrent Mode. Device acts as both an AP and a Mesh Point.
typedef enum operate_mode_e{
STA=0,
AP,
AP_STA,
MP,
AP_MP

} operate mode t;

2.5.13 wlan_config_info()

A versatile API to access or modify the internal system configuration variables.

Functional Description:

¢ Dual Mode: This function acts as both a "Getter" and a "Setter" depending on the
parameters.

o Get/Print: If pconfig_info is NULL, it prints the current value of the specified
variable to the debug UART. If var_id is 0, it prints all variables.

o Set: If pconfig_info is a valid string, it updates the specified variable with that
value.

e System Variables: It operates on the internal configuration table (see list below),
covering everything from network settings to hardware parameters.
e Persistence: Changes are saved to non-volatile memory.

Precondition: If critical parameters (e.g. Mode, Channel) are changed, a system restart
(wlan_restart()) is required.

Prototype:

void wlan_config_info(unsigned char var_id, char* pconfig_info)

Returns

Parameters

void

var_id: The ID of the configuration variable (see table below).
pconfig_info:
- NULL: Print the current value of [var_id](#25131-configuration-

Page 25 of 62

www.ampedrftech.com

WLAN API Reference Guide

Returns Parameters

variables-var_id) (or all if ID=0).
- String: Pointer to a null-terminated string containing the new value to set.

Example Usage:

wlan_config_info(AMP_VARID_MESH_ID, "MyNewMeshNetwork™);

wlan_config_info(AMP_VARID_MESH_ID, NULL);

wlan_config_info(©, NULL);

2.5.13.1 Configuration Variables (var_id)

var_id (Macro)

Details

Restart
Required

AMP_VARID BUILD_ VERSION

Name: BuildVersion

Def: 151202A

Desc: Date code version of the
software (read only)

No

AMP_VARID_DEVICE_NAME

Name: DeviceName

Def: Amped WIFI

Desc: Up to 20 characters are
allowed (case sensitive)

No

AMP_VARID_STA_MAC_ADDR

Name: STA_ MAC_ADDR

Def: 00043e26002d

Desc: MAC address of the station
interface (Read Only).

AMP_VARID_DHCP_MODE

Name: DHCPMode
Def: true
Desc: true=enable DHCP

false=disable DHCP DHCP on/off.

No

AMP_VARID_IP_ADDRESS

Name: IPAddress
Def: 192.168.0.2
Desc: A static IP address, when
DHCP off or failed, it will be used

No

AMP_VARID_ NET_MASK

Name: NetMask

Def: 255.255.255.0

Desc: Subnet mask of the local
network (e.g., "255.255.255.0").

No

AMP_VARID_GATE_WAY

Name: GateWay
Def: 192.168.0.1
Desc: Gateway of the network

No

AMP_VARID_SSID

Name: SSID
Def: Amped RF

No

Page 26 of 62

www.ampedrftech.com

WLAN API Reference Guide

var_id (Macro)

Details

Restart
Required

Desc: ESSID of the Access Point
connection destination

AMP_VARID_PASS_PHRASE

Name: PassPhrase

Def: 12345678

Desc: WPA/WPA2 Passphrase for
the network.

No

AMP_VARID_AUTH_TYPE

Name: AuthType

Def: 1

Desc: 0=NONE 1= WPA2-PSK WIFI
encryption methods

No

AMP_VARID_HOST_IP_ADDR

Name: HostIPAddr
Def: 192.168.0.10
Desc: Remote device’s IP address

No

AMP_VARID_IP_PROTOCOL

Name: |IPProtocol

Def: 1

Desc: 0=TCP Server 1=UDP 2=TCP
client Protocol type

No

AMP_VARID_HOST_PORT

Name: HostPort

Def: 2015

Desc: Remote device’s listen port
number.

No

AMP_VARID_ LOCAL_PORT

Name: LocalPort
Def: 2015
Desc: Local listen port number.

No

AMP_VARID_UART_BAUDRATE

Name: UartBaudrate

Def: 115200

Desc: 2400, 4800, 9600, 19200,
38400, 57600, 115200, 230400,
460800, 921600

No

AMP_VARID_UART_PARITY

Name: UartParity

Def: none

Desc: odd, even, none UART parity.
Typical: none

No

AMP_VARID_UART_DATA BITS

Name: UartDataBits

Def: 8

Desc: 8, 9 UART data bits per
character. Typical:8

No

AMP_VARID_ UART_STOP_BITS

Name: UartStopBits

Def: 1

Desc: 0.5, 1, 1.5, 2 UART number of
stop bits.Typical:1

No

AMP_VARID_ UART_FLOW_CONTROL

Name: UartFlowControl
Def: false

No

Page 27 of 62

www.ampedrftech.com

WLAN API Reference Guide

var_id (Macro)

Details

Restart
Required

Desc: True= enable UART hardware
RTS/CTS flow control False= disable
RST/CTS flow control

AMP_VARID_HARDWARE

Name: Hardware
Def: WF88-M
Desc: Module hardware type. (read

only)

AMP_VARID_CPU_MHZ

Name: CpuMHz

Def: 42

Desc: Module’s CPU speed: 42Mhz
is supported

Yes

AMP_VARID_CHANNEL

Name: Channel

Def: 1

Desc: 2.4GHz: 1-13 5GHz: 36-165
Set the WiFi channel for AP mode
(no effect in STA mode).

Yes

AMP_VARID_DEVICE_MODE

Name: DeviceMode

Def: MP

Desc: STA, AP, AP_STA, MP, or
AP_MP Wi-Fi module operation
mode

Yes

AMP_VARID OUT_MTU_SIZE

Name: OutMtuSize

Def: 1400

Desc: 1 - 1420 Packet size of UART
received. Typical:1400

Yes

AMP_VARID_MAX_STA_COUNT

Name: MaxSTACount

Def: 5

Desc: 1-12 Maxim station number in
AP mode. Typical:5

Yes

AMP_VARID_MP_MODE

Name: MPMode

Def: 0

Desc: 0=Disable; 1=Enable Multiple
connections on/off

Yes

AMP_VARID_KEEP_ALIVE

Name: KeepAlive
Def: 60
Desc: Keep-alive interval in seconds.

No

AMP_VARID_STATION_INACTIVE

Name: Stationlnactive

Def: 120

Desc: 15-255second When
Stationlnactive time passed, station
didn’t send any data, AP will confirm
whether station still in region

No

AMP_VARID_WSM_FIRMWARE

Name: WsmFirmware
Def: wsm_V3.2.3.bin

Yes

Page 28 of 62

www.ampedrftech.com

WLAN API Reference Guide

var_id (Macro)

Details

Restart
Required

Desc: Filename of the Wi-Fi
firmware binary stored in flash.

AMP_VARID_WSM_BOOTLOADER

Name: WsmBootloader
Def: bootloader.bin
Desc: Filename of the Wi-Fi
bootloader binary.

Yes

AMP_VARID_WSM_SDD

Name: WsmSdd

Def: sdd_6010.bin

Desc: Filename of the Wi-Fi SDD
(Configuration) binary.

Yes

AMP_VARID_MQTT_SERVER_IP

Name: MQTTServerlP

Def: 192.168.1.76

Desc: IP address or Domain Name
of the MQTT broker.

No

AMP_VARID MQTT_SERVER_PORT

Name: MQTTServerPort

Def: 1883

Desc: Port number of the MQTT
broker (e.g., 1883, 8883).

No

AMP_VARID MQTT_SERVER_USR_NAME

Name: MQTTServerUsrName
Def: admin

Desc: Username for MQTT broker
authentication.

No

AMP_VARID_MQTT_SERVER_PASSWD

Name: MQTTServerPasswd

Def: password

Desc: Password for MQTT broker
authentication.

No

AMP_VARID_MQTT_SUBSCRIBE_TOPIC

Name: MQTTSubscribeTopic

Def: testtopic

Desc: The default topic the module
subscribes to after connecting to the
broker.

No

AMP_VARID_MQTT_PUBLISH_TOPIC

Name: MQTTPubishTopic

Def: testtoptic

Desc: The default topic used for
outgoing MQTT messages.

No

AMP_VARID_MQTT_QOS

Name: MQTTQoS

Def: 0

Desc: MQTT Quality of Service level
(0: At most once, 1: At least once, 2:
Exactly once).

No

AMP_VARID MQTT_AUTH_TYPE

Name: MQTTAuthType
Def: 1
Desc: MQTT Authentication Mode:

No

Page 29 of 62

www.ampedrftech.com

WLAN API Reference Guide

var_id (Macro)

Details

Restart
Required

0O=User/Pass, 1=Cert, 2=Mutual,
4=None.

AMP_VARID_ADDR_TYPE

Name: AddrType

Def: 0

Desc: Selects the IP address type
preference: 0 for IPv4, 1 for IPv6.

AMP_VARID_LINK_TYPE

Name: LINKTYPE

Def: 0

Desc: Selects the default link
protocol: 0 for TCP, 1 for MQTT.

No

AMP_VARID_MQTT_CA_CRT

Name: MQTTCaCrt

Def: CA.crt

Desc: Filename of the MQTT CA
certificate.

No

AMP_VARID MQTT_CLIENT_CRT

Name: MQTTClinetCrt

Def: client.crt

Desc: Filename of the MQTT Client
certificate.

No

AMP_VARID MQTT_CLIENT_KEY

Name: MQTTClinetKey

Def: client.key

Desc: Filename of the MQTT Client
private key.

No

AMP_VARID_DNS1_V4

Name: DNS1V4

Def: 8.8.8.8

Desc: Primary IPv4 DNS server
address.

No

AMP_VARID_DNS2_V4

Name: DNS2V4

Def:1.1.1.1

Desc: Secondary IPv4 DNS server
address.

No

AMP_VARID_MESH_ID

Name: MESH_ID
Def: mymesh12345
Desc: Range 1~32 char

Yes

AMP_VARID_MESH_PASS_PHRASE

Name: MESH_PassPhrase
Def: 12345678
Desc: Range 1~64char

Yes

AMP_VARID_MESH_AUTH_TYPE

Name: MESH_AuthType

Def: 2

Desc: Authentication method. o:
Open, 2: SAE (Secure Authentication
of Equals).

Yes

AMP_VARID_APP_AUTO_START

Name: APP_AutoStart
Def: false

Yes

Page 30 of 62

www.ampedrftech.com

WLAN API Reference Guide

var_id (Macro)

Details

Restart
Required

Desc: Enable (true) or disable (false)
automatic application startup on
boot.

AMP_VARID_AUTO_SSID

Name: AutoSSID

Def: Amped RF

Desc: Default SSID used for
automatic connection/AP setup.

Yes

AMP_VARID_AUTO_PASS_PHRASE

Name: PassPhrase

Def: 12345678

Desc: WPA/WPA2 Passphrase for
the network.

Yes

2.5.14 wlan_get_config_bylID()

Retrieves the current value of a system configuration variable by its ID.

Functional Description:

e Synchronous Retrieval: Returns the requested configuration value into the provided

buffer.

e String Format: Regardless of the internal data type (integer, boolean, or string), all
values are returned as null-terminated strings.
o Buffer Safety: The caller must provide a buffer and specify its length (1en) to prevent
memory overflow.

Prototype:

void wlan_get_config_byID(char* buf, ul6e_t len, ulé6_t id)
Parameters | Description
buf Destination buffer where the configuration string will be stored.
len Maximum size of the buffer in bytes.
id The ID of the variable to retrieve (refer to var_id).

Example Usage:

To get the Mesh Point mode status:

char mode_buf[8];

wlan_get config byID(mode_buf, sizeof(mode buf), 31);

if (strcmp(mode buf, "1") == 0) {

printf("Mesh Point mode is ENABLED\n");

}

Tip: If unsure about the parameter format for a specific var_id, you can call

wlan_config_info(0, NULL). This will output the current values and formats of all

variables to the UART console for confirmation.

Page 31 of 62

www.ampedrftech.com

WLAN API Reference Guide
2.6 System APIs

The following table summarizes the available system APIs:

Function Description
wlan_restart() | Performs a full hardware-level system reset of the module.
wlan_printf() Prints formatted strings to the system's primary debug UART interface.

2.6.1 wlan_restart()

Performs a full hardware-level system reset of the module.
Functional Description:

o Hardware Reset: Triggers a chip-wide reset by writing to the system configuration reset
registers. This action follows the same sequence as a physical power-on reset.

e Configuration Reload: During the subsequent boot sequence, the module re-reads all
non-volatile memory (NV) variables. This is the standard method to apply changes made
via wlan_config_info().

Prototype:

void wlan_restart(void)

Precondition: None.

Returns Parameters

void void

Example Usage:

wlan_printf("Applying new settings and rebooting...\n");
wlan_restart();

2.6.2 wlan_printf()

Prints formatted strings to the system's primary debug UART interface.
Functional Description:

e Operates similarly to the standard C printf () function, allowing for formatted output
(strings, integers, hex, etc.).
e Output is sent to the system console (typically UARTO or the designated debug port).

Prototype:

void wlan_printf(char *fmt, ...)

Returns Parameters

void fmt: Pointer to a null-terminated format string.
.... Optional arguments corresponding to the format specifiers.

Example Usage:

Page 32 of 62
www.ampedrftech.com

int sensor_val = 25;

WLAN API Reference Guide

wlan_printf("System initialized. Current temperature: %d.\n", sensor_val);

2.7 Driver APls

The Driver APIs provide low-level control over the module's hardware interfaces, including
UART, SPI, and GPIO. These functions are typically used for data passthrough, peripheral

communication, and status signaling.

The following table summarizes the available driver APIs:

Function

Description

wlan—set—uar—ecenneei—madaf

(Unsupported) Configures UART for bypass/connect
mode with a receive callback.

wlan_uart_send()

Sends a single byte of data over the specified UART
port.

wlan—set—uart—baudrate) (Unsupported) Sets the operating baud rate for the
UART interface.

wlan—spi—initD (Unsupported) Initializes the SPI interface parameters
and roles.

wlan—spi—snd—bytes (Unsupported) Transmits a buffer of data over the SPI
interface.

wlan—spi—sndrev—bytes() (Unsupported) Performs simultaneous SPI transmit and
receive.

wlan—spi—rev—bytes() (Unsupported) Receives a buffer of data over the SPI

interface.

wlan_gpio_config()

Configures a GPIO pin's direction.

wlan_gpio_set()

Sets the output level of a GPIO pin.

wlan_gpio_get()

Reads the current level of a GPIO pin.

2.7.1 wlan_set_uart_connect_mode() (Unsupported)

Note: This function is currently NOT SUPPORTED in this SDK version.

Functional Description:

e Intended Use: Historically designed to switch the UART interface from Command Mode
(AT mode) to Connect Mode (Data passthrough mode).

e Status: This function is a placeholder and does not contain an active implementation.

e Callback: Intended to register a user callback function of type uart_callback to handle

incoming UART data.
Prototype:

void wlan_set uart _connect mode(uart_callback *rx_cb)

Precondition: None (Feature not supported).

Page 33 of 62

www.ampedrftech.com

WLAN API Reference Guide

Returns Parameters

void rx_cb: Pointer to a callback function of type void (*)(unsigned char *pBuf,
unsigned short len).

2.7.2 wlan_uart_send()

Sends a single byte of data through the specified UART port.
Functional Description:

¢ Single Byte Transmission: Transmits exactly one 8-bit data byte. For sending buffers or
strings, this function must be called in a loop.
e Port Selection: Supports multiple UART ports available on the module.

Prototype:

void wlan_uart_send(uart_port_t PortNum, u8 t data)

Returns Parameters

void PortNum: Target UART port index (refer to uart_port_t).
data: The 8-bit byte to transmit.

2.7.2.1 Enum uart_port_t Definition
Used to specify the hardware UART interface.

Value | Name Description
0 UART_PORTO | UART interface O (typically the primary AT command / Debug
port). Only UARTO is supported.

typedef enum uart_port_e

{
UART_PORT@

} uart_port_t;

Example Usage:

wlan_uart_send(UART_PORTO, 'A');

char *msg = "Hello";

while(*msg) {
wlan_uart_send(UART_PORTO, *msg++);

}

2.7.3 wlan_set_uart_baudrate() (Unsupported)
Sets the communication baud rate for the specified UART port.
Functional Description:

e Speed Configuration: Adjusts the data transmission and reception speed (bps) of the
hardware UART interface.

Page 34 of 62
www.ampedrftech.com

WLAN API Reference Guide
e Supported Rates: Supports standard baud rates such as 9600, 115200, and 921600.
Prototype:

void wlan_set uart baudrate(uart_port t PortNum, u32_t baudrate)

Returns Parameters

void PortNum: Target UART port index (refer to uart_port_t).
baudrate: Desired communication speed in bits per second (e.g., 115200).

Example Usage:

wlan_set_uart_baudrate(UART_PORTO, 115200);

2.7 .4 wlan—spi—inith (Unsupported)
Initialization SPI.
Prototype:

void wlan_spi init(spi_port_t portnum)

Returns Parameters

void Use tSPIDevice struct to set the spi info

2.7.4.1 Enum spi_port_t Definition

Value | Name Description
0 SPI _PORTO | SPI Interface O.
1 SPI _PORT1 | SPI Interface 1.
2 SPI_PORT2 | SPI Interface 2.
typedef enum spi port_e
{
SPI_PORTO,
SPI_PORT1,
SPI_PORT2

} spi_port_t;

2.7.5 wlan—spi—snd—bytes(} (Unsupported)

spi send the bytes.

Prototype:

void wlan_spi snd bytes(u8 t * sndbuf, unsigned short length)

Returns | Parameters
void sndbuf: the buffer that want to send length: the buffer length

2.7.6 wlan_spi_sndrcv_bytes() (Unsupported)

spi send and receive the bytes at the same time.

Page 35 of 62
www.ampedrftech.com

WLAN API Reference Guide
Prototype:

ulé_t wlan_spi_sndrcv_bytes(u8 t * sndbuf, u8_t rcvbuf, ul6_t length)

Returns Parameters

sndbuf: the buffer that want to send data rcvbuf: the buffer that want to receive
data length: the buffer length

2.7.7 wlan—spi—rev—bytes(} (Unsupported)

slave mode, receive the bytes
Prototype:
ulé_t wlan_spi_rcv_bytes(u8_t * buf, ul6_t length)

Returns | Parameters
rcvbuf: the buffer that want to receive data length: the buffer length

2.7.8 wlan_gpio_config()
Configures the operational direction (Input or Output) for a specific GPIO pin.
Functional Description:

e Direction Control: Sets whether a physical pin acts as a digital input (reading external
signals) or a digital output (driving external circuits).

¢ Initialization: This function should be called before performing any read or write
operations on the pin.

Prototype:

void wlan_gpio config(wlan_gpio t gpio, gpio direction_t dir)

Parameters | Description
gpio The target GPIO pin index (refer to wlan_gpio_t).
dir The desired direction: GPIO_INPUT (0) or GPIO_OUTPUT (1).

Example Usage:

wlan_gpio_config(WLAN_GPIO_2, GPIO_OUTPUT);

2.7.8.1 Enum wlan_gpio_t Definition
Available GPIO pins on the module.

Value Name
0-9 WLAN_GPIO O to WLAN_GPIO 9

typedef enum gpio e
{
WLAN_GPIO_ 0,
WLAN_GPIO_ 1,

Page 36 of 62
www.ampedrftech.com

WLAN API Reference Guide

WLAN_GPIO 9,
} wlan_gpio_t;

2.7.8.2 Enum gpio_direction_t Definition

Value | Name Description
0 GPIO_INPUT Configure pin as Input.
1 GPIO_OUTPUT | Configure pin as Output.

typedef enum gpio_direction_e

{
GPIO_INPUT,

GPIO_OUTPUT
} gpio_direction_t;

2.7.9 wlan_gpio_set()

Set GPIO value
Prototype:

void wlan_gpio_set(wlan_gpio_t gpio, u8 t value)

Returns Parameters

typedef enum gpio_e (wlan_gpio_t)

2.7.10 wlan_gpio_get()

Get GPIO value.
Prototype:
u8_t wlan_gpio_get(wlan_gpio_t gpio)

Returns Parameters
Oor1 typedef enum gpio_e

2.8 Timer APIs

The Timer APIs provide a simplified interface to the underlying FreeRTOS software timer
service. These functions allow applications to schedule periodic or one-shot events without
blocking the main execution threads.

Key characteristics include:

o Software-Based: Timers are managed by the FreeRTOS kernel and share the context of
the Timer Service Task.

o Efficiency: Suitable for low-frequency housekeeping tasks, timeouts, and state machine
updates.

e Capacity: The current SDK implementation supports a fixed pool of 5 user timers
(Indices 0—4).

The following table summarizes the available timer APIs:

Page 37 of 62
www.ampedrftech.com

WLAN API Reference Guide

Function Description

wlan_timer_config() Allocates and configures a new software timer instance.
wlan_timer_start() Starts or restarts a configured timer.

wlan_timer_stop() Stops a running timer.

wlan_timer_destroy() | Deletes a software timer instance.

2.8.1 wlan_timer_config()

Creates and configures a new software timer instance. The SDK uses an internal array to

manage up to 5 concurrent timers.

Functional Description:

o Timer Creation: Allocates a FreeRTOS software timer and assigns it a unique index.

o Capacity: Supports a maximum of 5 timers (Indices 0 to 4).
Execution Context: The callback function executes within the FreeRTOS Timer Service
Task (Daemon Task). Avoid long-running or blocking operations in the callback.

¢ Reload Behavior: Can be configured as a periodic (auto-reload) or one-shot timer.

Prototype:

unsigned char wlan_timer_config(const char * const pTimerName,
unsigned long TimerPeriodInTicks,
unsigned long uxAutoReload,
void * const pvTimerlID,
timer_callback pxCallbackFunction)

Returns

Parameters

unsigned char: The assigned Timer
Index (0-4). This index acts as the handle
for starting and stopping the timer.

pTimerName: A text name for the timer
(useful for debugging).
TimerPeriodInTicks: The timer period in
ticks. Use pdMS_TO_TICKS(ms) for
millisecond conversion.

uxAutoReload: 1 for periodic mode (auto-
reload); @ for one-shot mode.

pvTimerlD: User identifier assigned to the
timer.

pxCallbackFunction: The function to be
executed when the timer expires. Refer to
timer_callback.

2.8.1.1 Callback timer_callback Definition

timer_callback is the callback function executed when the timer expires.

Name Signature

Description

timer_callback | void (*func)(TimerHandle_t A pointer to a function that takes

XxTimer)

no arguments and returns nothing.

typedef void (* timer_callback) (TimerHandle_t xTimer);

Page 38 of 62

www.ampedrftech.com

WLAN API Reference Guide
TimerHandle_t xTimer:
Handle of the software timer that expired and caused this callback to be executed.

The handle can be used to identify the timer instance, retrieve the user-defined timer ID
(pvTimerID), or perform timer-specific operations.

2.8.2 wlan_timer_start()

Activates a previously configured software timer.
Functional Description:

e Activation: Sends a command to the FreeRTOS timer daemon task to start the timer
associated with the given index.
Behavior:

o If the timer is stopped, it starts running.

If the timer is already running, this function re-starts the timer (resetting its expiry time
relative to the current time).

e Context: Can be called from any user task.

Prototype:

void wlan_timer_start(unsigned char index)

Precondition: The timer must be configured first using wlan_timer_config to obtain a valid
index.

Returns Parameters

void index: The Timer Index (0-4) returned by wlan_timer_config.

2.8.3 wlan_timer_stop()

Stops a running software timer.

Functional Description:

o Deactivation: Transitions the timer associated with the given index to the dormant state.

o Effect: The timer will no longer expire, and its associated callback function will not be
executed until the timer is started again.

o Idle Safety: If the timer is already stopped (dormant), calling this function has no effect.
Prototype:

void wlan_timer_ stop(unsigned char index)

Precondition: The timer must be configured first using wlan_timer_config to obtain a valid
index.

Returns | Parameters
void index: The Timer Index (0-4) returned by wlan_timer_config.

2.8.4 wlan_timer_destroy()

Deletes a software timer instance and releases its allocated resources.

Page 39 of 62
www.ampedrftech.com

WLAN API Reference Guide
Functional Description:

e Resource Cleanup: Permanently deletes the underlying FreeRTOS timer and clears the
internal handle in the SDK's timer pool.

¢ Index Management: Once destroyed, the index (0-4) becomes available for a new
wlan_timer_config() call.

Prototype:

void wlan_timer_destroy(unsigned char index)

Precondition: The timer must have been previously configured via wlan_timer_config.

Returns Parameters

void index: The Timer Index (0-4) to be destroyed.

2.8.5 Example: Timer Usage

The following code demonstrates how to configure, start, and use a software timer.

Note: The timer_setup_example function is intended to be called as a subroutine (e.g.,
from main or an existing Task), not as a standalone Task. Therefore, it returns naturally.

#include "achl118x.h"

#include "FreeRTOS.h"

#include "timers.h"

#include "wlan_driver.h"™ // For timer APIs
#include <stdio.h>

// Global handle to store the timer index so it can be used Later (e.g. to
stop it)
static unsigned char g_my_timer_idx;

// Timer callback function
void my_timer_callback(TimerHandle_t xTimer)

{
}

printf("Timer callback executed!\n");

// Initialization function (Call this from your Main TasR)

void timer_setup_example(void)

{
unsigned long timer_period_ms = 1000;
unsigned long auto_reload = 1; // 1 for periodic, 6 for one-shot
int timer_id = 1;

// Convert ms to ticRs
unsigned long period ticks = pdMS TO TICKS(timer period ms);

// 1. Configure the timer
// Returns 1index ©-4 on success
g my_timer_idx = wlan_timer_config("MyTimer",

Page 40 of 62
www.ampedrftech.com

WLAN API Reference Guide

period_ticks,
auto_reload,

(void *)(long)timer_id,
my_timer_callback);

printf("Timer Configured. Index: %d\n", g my timer_idx);

wlan_timer_start(g _my_ timer_idx);
printf("Timer Started.\n");
}

void stop_my_ timer(void)

{

wlan_timer_stop(g my timer_idx);

}
2.9 MQTT APIs

The MQTT APIs provide a client implementation of the MQTT protocol. They enable the
module to communicate with 10T cloud platforms or local brokers using a lightweight
publish/subscribe messaging model.

Key features include:

¢ APIs to connect, disconnect, manage session.

e Support for SSL/TLS encryption (one-way and mutual authentication) via certificate
configuration.

o Flexible publish and subscribe capabilities with Quality of Service (QoS) levels 0, 1, and
2.

¢ Connection and messaging operations are non-blocking.

The following table summarizes the available MQTT APIs:

Function Description

wlan_maqtt_set_server_ip() Configures the Broker IP or Domain Name.

wlan_mqtt_set_server_port() | Sets the Broker Port.

wian—megtt—set—clientidg (Unsupported) Configures the Client ID.

wian—magtt_set_keep—alive (Unsupported) Configures the Keep Alive interval.

wlan_mqtt_set_username() Sets the username.
wlan_mqtt_set_password() Sets the password.
wlan_mqtt_set_pub_topic() Sets the default publish topic.
wlan_mqtt_set_sub_topic() Sets the subscription topic.
wlan_mqtt_set_qos() Configures the QoS level.
wlan_mqtt_set_auth_type() Selects the authentication mode.

Page 41 of 62
www.ampedrftech.com

WLAN API Reference Guide

Function

Description

wlan_mqtt_set _ca_cert()

Sets the CA certificate filename.

wlan_mqtt_set_client_cert()

Sets the Client certificate filename.

wlan_mqtt_set_client_key()

Sets the Client private key filename.

wlan_mgqtt_connect()

Initiates the connection to the broker.

wlan_mgqtt_disconnect()

Terminates the MQTT session.

wlan_mqtt_get_status()

Retrieves connection status.

wlan_mqtt_publish()

Sends a message payload.

wlan_mqtt_subscribe()

Subscribes to a topic.

wlan_mqtt_unsubscribe()

Unsubscribes from a topic.

2.9.1 wlan_maqtt_set_server_ip()

Configures the address of the target MQTT broker.

Functional Description:

e Address Support: Sets the destination broker using either an IPv4 address (e.g.,
"192.168.1.100") or a fully qualified domain name (e.qg., "iot.eclipse.org").

o Persistent Storage: The configuration is saved to the system's non-volatile memory and

will persist across reboots.

¢ Validation: Performs a length check on the input string to ensure system compatibility.

Prototype:

enum result_type wlan_mqgtt_set_server_ip(const char *ip_or_domain)

Returns

Parameters

result_type:

NO_ERR: Success.
PARA_ERR: Invalid parameter
(e.g., string length > 64).
VALUE_ERR: Storage failure.

ip_or_domain: Pointer to a null-terminated string
containing the IP or domain name. Max length: 64
characters.

Example Usage:

if (wlan_mqgtt_set server_ ip("broker.example.com"™) == NO_ERR) {
wlan_printf("MQTT Server IP updated successfully.\n");

}

2.9.2 wlan_maqtt_set_server_port()

Configures the broker port for MQTT authentication and connection.

Functional Description:

o Parameter Setup: Sets the broker port used by the MQTT client.
e Persistent Storage: The value is saved to non-volatile memory and persists across

system restarts.

Page 42 of 62

www.ampedrftech.com

WLAN API Reference Guide

¢ Validation: Verifies the input format and range before saving.

Prototype:

enum result_type wlan_mqtt_set_server_port(int port)

Returns

Parameters

result_type:

NO_ERR: Success.

PARA_ERR: Invalid parameter.
VALUE_ERR: Storage failure.

port: int: Port number (Range: 1-65535, Default: 1883)

Example Usage:

if (wlan_mqgtt_set_server_port(1883) == NO_ERR) {
wlan_printf("wlan_mqgtt_set server_port updated successfully.\n");

}

2.9.3 wlan_mqtt_set_client_id()

Configures the unique Client Identifier (Client ID) for the MQTT session.

Functional Description:

e Identity: Sets the string used to uniquely identify this client to the broker.
¢ Uniqueness: lt is critical that each device has a unique Client ID (e.g., based on MAC
address). If two clients connect with the same ID, the broker will disconnect the earlier

one.

e Persistent Storage: Saved to non-volatile memory.

Prototype:

enum result_type wlan_mqtt_set_client_id(const char *client_id)

Returns

Parameters

result_type:
NO_ERR: Success.

length > 64).

PARA_ERR: Invalid parameter (e.g.,

client_id: Pointer to a null-terminated string. Max
length: 64 characters.

Example Usage:

wlan_mqgtt_set_client_id("ACH118x-A1B2C3");

2.9.4 wlan_mqtt_set_keep_alive()

Configures the MQTT Keep Alive interval.

Functional Description:

e Heartbeat: Defines the maximum time interval (in seconds) that can elapse between two

messages sent by the client.

e Ping: If no data is sent within this period, the client will automatically send a PINGREQ
packet to maintain the connection.

Page 43 of 62

www.ampedrftech.com

WLAN API Reference Guide

o Default: If not set, the default is typically 60 seconds.

Prototype:

enum result_type wlan_mqtt_set_keep_alive(int seconds)

Returns

Parameters

result_type:

NO_ERR: Success.
PARA_ERR: Invalid value
(e.g., <0).

seconds: Keep Alive interval in seconds (0-65535). 0
disables the mechanism.

Example Usage:

wlan_mgtt_set_keep_alive(120);

2.9.5 wlan_maqtt_set_username()

Configures the username for MQTT authentication and connection.

Functional Description:

Parameter Setup: Sets the username used by the MQTT client.
e Persistent Storage: The value is saved to non-volatile memory and persists across

system restarts.

¢ Validation: Verifies the input format and range before saving.

Prototype:

enum result_type wlan_mqtt_set_username(const char* username)

Returns

Parameters

result_type:
NO_ERR: Success.
PARA_ ERR: Invalid
parameter.
VALUE_ERR: Storage
failure.

username: const char*: Pointer to null-terminated string (Max
length: 64 characters)

Example Usage:

if (wlan_mqgtt_set _username("my user") == NO_ERR) {
wlan_printf("wlan_mqgtt_set_username updated successfully.\n");

}

2.9.6 wlan_mqtt_set_password()

Configures the password for MQTT authentication and connection.

Functional Description:

o Parameter Setup: Sets the password used by the MQTT client.
e Persistent Storage: The value is saved to non-volatile memory and persists across

system restarts.

Page 44 of 62

www.ampedrftech.com

WLAN API Reference Guide
¢ Validation: Verifies the input format and range before saving.

Prototype:

enum result_type wlan_mqtt_set_password(const char* password)

Returns Parameters

result_type: password: const char*: Pointer to null-terminated string (Max
NO_ERR: Success. length: 64 characters)

PARA_ERR: Invalid
parameter.
VALUE_ERR: Storage
failure.

Example Usage:

if (wlan_mqgtt_set_password("my secret pass") == NO_ERR) {
wlan_printf("wlan_mqgtt_set_password updated successfully.\n");

}
2.9.7 wlan_mqtt_set_pub_topic()
Configures the default topic used for outgoing (published) MQTT messages.

Functional Description:

o Topic Setup: Sets the primary MQTT topic name that the module will use when sending
data.

¢ Length Limitation: The topic string is strictly limited to a maximum of 20 characters.
Persistent Storage: The configuration is saved to non-volatile memory and remains
active across system restarts.

Prototype:

enum result_type wlan _mqgtt_set pub_topic(const char *topic)

Returns Parameters
result_type: topic: Pointer to a null-terminated string containing the
NO_ERR: Success. default publish topic. Max length: 20 characters.

PARA_ERR: Invalid parameter
(e.g., length > 20 characters).
VALUE_ERR: Storage failure.

Example Usage:

if (wlan_mgtt_set_pub_topic("home/sensor/status") == NO_ERR) {
wlan_printf("Default publish topic configured.\n");
}

2.9.8 wlan_mqtt_set_sub_topic()

Configures the default topic the module will subscribe to upon establishing an MQTT
connection.

Page 45 of 62
www.ampedrftech.com

WLAN API Reference Guide

Functional Description:

e Topic Configuration: Sets the target MQTT topic string for incoming messages.

o Design Limitation: Current SDK architecture supports only one (1) active subscription
topic. Multiple calls to this APl will overwrite any previously configured topic.

o Persistent Storage: The topic name is saved to non-volatile memory.

Prototype:
enum result_type wlan_mqtt_set_sub_topic(const char *topic)

Returns Parameters
result_type: topic: Pointer to a null-terminated string containing
NO_ERR: Success. the subscription topic. Max length: 20 characters.

PARA _ERR: Invalid parameter
(e.g., length > 20 characters).
VALUE_ERR: Storage failure.

Example Usage:

if (wlan_mqgtt_set_sub_topic("home/sensor/cmd") == NO_ERR) {
wlan_printf("Subscription topic set. Note: This overwrites any previous

topic.\n");

}

2.9.9 wlan_mqtt_set_qos()
Configures the Quality of Service (QoS) level for MQTT messages.
Functional Description:

e QoS Levels: Sets the reliability level for publishing and subscribing.

o ©: At most once (Fire and forget).
o 1: At least once (Acknowledged).
o 2: Exactly once (Assured delivery).

e Persistent Storage: Saved to non-volatile memory.

Prototype:

enum result_type wlan_mqgtt_set_qgos(int qos)

Returns Parameters

result_type: gos: The desired MQTT QoS level (0, 1,
NO_ERR: Success. or 2).

PARA_ERR: Invalid QoS value (must be 0, 1,

or 2).

Example Usage:

wlan_mgtt_set _gos(1);

Page 46 of 62
www.ampedrftech.com

2.9.10 wlan_maqtt_set_auth_type()

WLAN API Reference Guide

Configures the authentication mode for the MQTT connection.

Functional Description:

o Mode Selection: Defines whether the connection requires a username/password or

SSL/TLS certificates.
e Supported Types:

O
O
O
(@)

0: User and Password authentication.

1: SSL/TLS Server Authentication (One-way).
2: SSL/TLS Mutual Authentication (Two-way).
4: No Authentication / Anonymous.

e Persistent Storage: Saved to non-volatile memory.

Prototype:

enum result_type wlan_mgtt_set auth_type(int type)

Returns

Parameters

result_type:
NO_ERR: Success.
PARA_ERR: Invalid authentication

type.

type: The authentication mode index (0, 1, 2, or
4).

Example Usage:

wlan_mqgtt_set auth_type(9);

2.9.11 wlan_mqtt_set_ca_cert()

Sets the filename for the CA Certificate used in SSL/TLS encrypted MQTT connections.

Functional Description:

Filename Configuration: Stores the name of the file that contains the CA Certificate data.
o Filesystem Requirement: This API only sets the filename reference. The actual
certificate/key file must be pre-uploaded to the module's internal filesystem before

establishing a connection.

o Persistent Storage: The filename is saved to the system configuration and persists

across reboots.

Prototype:

enum result type wlan mgtt set ca cert(const char *filename)

Returns

Parameters

result_type:
NO_ERR: Success.
PARA_ERR: Invalid parameter

filename: Pointer to a null-terminated string
containing the file name. Max length: 64 characters.

Page 47 of 62

www.ampedrftech.com

WLAN API Reference Guide

Returns Parameters

(e.g., filename length > 64).
VALUE_ERR: Storage failure.

Example Usage:

if (wlan_mqgtt_set_ca_cert("ca.crt") == NO_ERR) {
wlan_printf("CA Certificate filename configured successfully.\n");

}
2.9.12 wlan_maqtt_set_client_cert()
Sets the filename for the Client Certificate used in SSL/TLS encrypted MQTT connections.

Functional Description:

o Filename Configuration: Stores the name of the file that contains the Client Certificate
data.

¢ Filesystem Requirement: This API only sets the filename reference. The actual
certificate/key file must be pre-uploaded to the module's internal filesystem before
establishing a connection.

o Persistent Storage: The filename is saved to the system configuration and persists
across reboots.

Prototype:
enum result_type wlan_mqtt_set_client_cert(const char *filename)

Returns Parameters
result_type: filename: Pointer to a null-terminated string
NO_ERR: Success. containing the file name. Max length: 64 characters.

PARA_ERR: Invalid parameter
(e.g., filename length > 64).
VALUE_ERR: Storage failure.

Example Usage:

if (wlan_mqgtt_set_client_cert("client.crt”) == NO_ERR) {
wlan_printf("Client Certificate filename configured successfully.\n");

}

2.9.13 wlan_mqtt_set_client_key()

Sets the filename for the Client Private Key used in SSL/TLS encrypted MQTT connections.
Functional Description:

o Filename Configuration: Stores the name of the file that contains the Client Private Key
data.

Page 48 of 62
www.ampedrftech.com

WLAN API Reference Guide

Filesystem Requirement: This API only sets the filename reference. The actual
certificate/key file must be pre-uploaded to the module's internal filesystem before

establishing a connection.

Persistent Storage: The filename is saved to the system configuration and persists

across reboots.

Prototype:

enum result_type wlan_mqgtt_set_client_key(const char *filename)

Returns

Parameters

result_type:

NO_ERR: Success.
PARA_ERR: Invalid parameter
(e.g., filename length > 64).
VALUE_ERR: Storage failure.

filename: Pointer to a null-terminated string
containing the file name. Max length: 64 characters.

Example Usage:

if (wlan_mgtt_set_client_key("client.key") == NO_ERR) {
wlan_printf("Client Private Key filename configured successfully.\n");

}

2.9.14 wlan_mqtt_connect()

Initiates a connection request to the configured MQTT broker.

Functional Description:

Asynchronous Initiation: This function triggers the MQTT connection state machine. It
returns immediately after the request is queued and does not wait for the actual network

handshake to complete.

Automatic Handshake: Upon a successful call, the module attempts to establish a TCP
connection and perform the MQTT CONNECT exchange using the previously configured

server, port, and credentials.

Status Monitoring: After calling this function, the application can monitor the connection
state using wlan_maqtt_get_status() (polling) or the Signal Framework (asynchronous

notifications).

No Auto-Reconnect: If the MQTT connection is lost after being established, the SDK will
not attempt to reconnect automatically. The application layer must detect the
disconnection (via polling or signals) and explicitly call wlan_mgtt_connect() again to

re-establish the session.

UART Bypass Mode: Once the MQTT connection is successfully established, the
module's UARTO interface automatically enters Bypass Mode.

o Behavior: Any raw data received on UARTO from the host is directly encapsulated
into MQTT packets and published to the broker (using the default publish topic).

o Exiting Bypass Mode: To return UARTO to Command Mode (allowing AT
commands), the host must send the specific escape sequence: *"#*$/%.

Precondition:

Page 49 of 62

www.ampedrftech.com

WLAN API Reference Guide
The device must have a valid network connection (refer to wlan_sta_join).

Protocol Mode Selection: Ensure the module's protocol stack is configured for MQTT
operation rather than standard TCP. This is controlled by the LINKTYPE(@:TCP/1:MQTT)
system variable (AMP_VARID_LINK_TYPE, see var_id), which can be adjusted using the
wlan_config_info() API. If the system remains in TCP mode (default), the connection attempt
will be rejected with the error: "Current Work Mode is NOT MQTT mode”.

Broker parameters (IP, Port) and Client credentials (Username, Password) must be
configured using the respective wlan_mgtt_set_ * functions.

Prototype:

enum result_type wlan_mgtt_connect(void)

Returns Parameters
NO_ERR (0): Connection request successfully initiated. | void

2.9.15 wlan_maqtt_disconnect()

Terminates the active MQTT session and closes the network connection to the broker.
Functional Description:

e Session Termination: Sends an MQTT DISCONNECT packet to the broker (if the link is
still active) and closes the underlying TCP socket.

o Asynchronous Operation: Like the connect API, this is an asynchronous request. The
module will transition to a disconnected state in the background.

Precondition: An MQTT connection have been initiated via wlan_mqtt_connect.
Prototype:

enum result type wlan_mgtt_disconnect(void)

Returns Parameters
NO_ERR (0): Disconnect request accepted. | void

Example Usage:

wlan_mqgtt_disconnect();
wlan_printf("MQTT disconnection initiated.\n");

2.9.16 wlan_mqtt_get_status()
Retrieves the real-time connection status of the MQTT client.
Functional Description:

e Connectivity Check: Directly queries the MQTT stack to verify if the client is currently
connected to the broker.

e Usage: Recommended for business logic to verify link health before publishing or
subscribing.

Prototype:

Page 50 of 62
www.ampedrftech.com

WLAN API Reference Guide

u8_t wlan_mgtt_get_status(void)

Returns Parameters

1: Connected. void
0: Disconnected.

2.9.17 Monitoring MQTT Connection

In addition to polling with wlan_maqtt_get_status(), the application can use the Signal
Framework to receive asynchronous notifications about the MQTT connection state.

e SIG_SDK_MQTT_CONNECT_OK: Triggered when the client successfully connects to
the Broker.

o SIG_SDK_MQTT_DISCONNECT: Triggered when the connection to the Broker is lost or
terminated.

For details on how to subscribe to and handle these events, refer to the Signal Framework
section.

2.9.18 wlan_mqtt_publish()

Publishes a message payload to a specific MQTT topic.
Functional Description:

o Data Transmission: Packages the provided message and sends it to the broker under
the specified topic name.

e Topic Routing: The topic string determines which subscribers will receive the message.

e Payload: Supports arbitrary binary or text data via the message pointer and len
parameter.

Important Constraints:

o Topic Length: The topic string must not exceed 20 characters.

o Single Subscription Only: The SDK supports only one active subscription topic; calling
this API replaces the previous topic.

e Payload Size: While the SDK handles various sizes, it is recommended to keep the
message payload under 64 bytes for optimal performance on this module.

Prototype:

enum result_type wlan_mqtt_publish(const char *topic, const char *message,
int len)

Precondition: An MQTT connection must be established via wlan_mqtt_connect.

Returns Parameters

result_type: topic: Pointer to a null-terminated string
NO_ERR: Success. (Max 20 chars).

SEND_ERR: Failed to transmit the packet. message: Pointer to the data payload.
PARA_ERR: Invalid topic (length > 20) or len: Length of the message payload in bytes.
NULL pointer.

Example Usage:

Page 51 of 62
www.ampedrftech.com

WLAN API Reference Guide

char *payload = "Temp: 24C";
if (wlan_mqgtt_publish("sensors/data", payload, strlen(payload)) == NO_ERR)
{

}
2.9.19 wlan_maqtt_subscribe()

wlan_printf("Data published successfully.\n");

Subscribes to a specific MQTT topic to receive messages.
Functional Description:

e Subscription: Sends a SUBSCRIBE packet to the broker for the specified topic.

¢ Message Reception: Once subscribed, messages published to this topic by other clients
will be received by the module.

o Topic Length: The topic string must not exceed 20 characters.

Prototype:

enum result _type wlan_mqtt_subscribe(const char *topic, int rfu)

Precondition: An MQTT connection must be established via wlan_mqtt_connect.

Returns Parameters

result_type: topic: Pointer to a null-terminated string (Max 20
NO_ERR: Success. chars).

SEND_ERR: Subscription request rfu: Reserved for Future Use. Pass ©.

failed.

PARA_ERR: Invalid topic or NULL

pointer.

Example Usage:

if (wlan_mqgtt_subscribe("home/cmd", @) == NO_ERR) {
wlan_printf("Subscribed to home/cmd successfully.\n");

}

2.9.20 wlan_maqtt_unsubscribe()
Unsubscribes from a specific MQTT topic.
Functional Description:

o Unsubscription: Sends an UNSUBSCRIBE packet to the broker.
o Effect: The module will stop receiving messages for this topic.

Prototype:

enum result type wlan _mqgtt unsubscribe(const char *topic)

Precondition: An MQTT connection must be established.

Page 52 of 62
www.ampedrftech.com

WLAN API Reference Guide

Returns Parameters

result_type: topic: Pointer to the topic string to unsubscribe from.
NO_ERR: Success.
SEND_ERR: Request failed.
PARA_ERR: Invalid topic.

Example Usage:

wlan_mgtt_unsubscribe("home/cmd");
2.9.21 MQTT Connection Sequence

The following steps describe how to establish an MQTT connection (assuming the device is
already connected to an AP or Mesh network):

Switch Protocol Mode: Enable the MQTT stack by setting the LINKTYPE variable (var 55)
to 1 using the wlan_config_info() API.

Configure MQTT Server information:

o wlan_mqgtt_set_server_ip to set Server IP or Domain.
o wlan_mqgtt_set_server_port to set Server Port.

Configure MQTT Client information (Username, Password).
Configure MQTT QoS level.

Subscribe to MQTT topic.

Enable connection by calling wlan_mgtt_connect.

Sequence Diagram:

Page 53 of 62
www.ampedrftech.com

WLAN API Reference Guide

Application (Event Loop) WIF/MQTT SDK MQTT Broker

‘ Precondition: Network Connected (STA or Mesh)
‘ 1. Initialization

wlan_config_info(AMP_VARID_LINK_TYPE, "1") (Enable MQTT)

A J

wlan_maqtt_set_server_ip("broker.example.com”)

Y

wlan_mgtt_set_username("myuser")

A J

wlan_matt_set_password("mypassword”)

Y

wlan_maqtt_set_sub_topic("my/topic”)

A J

2. Connect (Async)

wlan_matt_connect()

Returns 0 (Request Accepted)

MQ‘TT Protocol Handshake (Background T*)sk)

CONNACK (Success)

‘ 3. Connection Feedback (via Signal)

Signal: SIG_SDK_MQTT_CONNECT_OK

-
-

Connection Verified. Start Publishing...

Application (Event Loop) WIF/MQTT SDK MQTT Broker

2.9.21.1 Example: MQTT Connection

The following C code demonstrates the sequence to configure and connect the MQTT client,
assuming the device has already successfully joined a network.

void mqgtt_start_sequence(void)
{
// ©. Precondition: Ensure Wi-Fi1 is connected
if (wlan_sta_status() == false) {
wlan_printf("Error: Network not connected.");
return;

}

wlan_printf("Starting MQTT Configuration...");

// 1. Switch Protocol Stack to MQTT (LinkType = 1)

// This is CRITICAL. Without this, the system stays in TCP mode.
wlan_config_info(AMP_VARID_LINK_TYPE, "1");

// 2. Configure Broker Settings

Page 54 of 62
www.ampedrftech.com

WLAN API Reference Guide

wlan_mqgtt_set_server_ip("broker.example.com");
wlan_mqtt_set server_port(1883);

// 3. Configure Client Credentials
wlan_mqtt_set _username("myuser");
wlan_mqtt_set password("mypassword");

// 4. Configure Session Parameters

wlan_mqgtt_set _qos(1); // QoS Level 1
wlan_mqgtt_set_sub_topic("cmd/topic"); // Topic to subscribe on connect
wlan_mqtt_set pub_topic("data/topic");// Default publish topic

// 5. Initiate Connection (Async)
// To confirm success, ensure you have subscribed to SIG_SDK MQTT_CONNE
CT_OK
// via wlan_sdk _subscribe().
if (wlan_mqgtt_connect() == NO_ERR) {
wlan_printf("MQTT Connect Request Sent. Waiting for Signal...\n");
} else {
wlan_printf("Failed to initiate connection.\n");
}

}

2.10 Mesh Networking Overview & Configuration

This section provides a guide to configuring and using the Mesh networking capabilities
(based on IEEE 802.11s) provided by the SDK. Unlike standard Station (STA) or Access
Point (AP) modes, Mesh networking allows devices to form a self-organizing, multi-hop
network.

2.10.1 Overview

To establish a Mesh network, devices must be configured to operate in Mesh Point (MP)
mode. All configuration is performed by modifying system variables using the
wlan_config_info() API. Because these settings modify the underlying Wi-Fi stack behavior,
a system restart is mandatory for the changes to take effect.

Once the system has restarted, the application can use the wlan_mesh_get_status() API to
programmatically monitor the association state and verify the link to the Mesh network
gateway.

2.10.2 Key Configuration Variables

The table below details the specific system variables required to configure a Mesh node. To
apply these settings, pass the corresponding var_id macros to the wlan_config_info()
function.

For a Mesh network to form, the MESH_ID, Channel, and AuthType must be identical
across all participating nodes.

Page 55 of 62
www.ampedrftech.com

WLAN API Reference Guide

var_id Name Value / Description

AMP_VARID DEVICE_MODE DeviceMode Must be set to MP (Mesh Point) or
AP_MP (Concurrent AP + Mesh).

AMP_VARID_CHANNEL Channel All Mesh nodes must be on the
same radio channel (e.g., 1, 6,
161).

AMP_VARID_MESH_ID MESH_ID A string identifier for the Mesh
network (similar to SSID). Max 32
chars.

AMP_VARID_MESH_AUTH_TYPE MESH_AuthType Authentication method. @: Open,
2: SAE (Secure Authentication of
Equals).

AMP_VARID_MESH_PASS_PHRASE | MESH_PassPhrase | The password string for the Mesh
network (required if AuthType is
SAE).

AMP_VARID MP_MODE MPMode Set to 1 to enable multi-point
forwarding features.

AMP_VARID IP_ADDRESS IPAddress Static IP address for the node
(e.g., 192.168.10.x).

2.10.3 wlan_mesh_get_status()

Checks the association status of the device within the Mesh network.
Functional Description:

e Gateway Verification: Confirms if the device is in a valid Mesh mode (MP or AP_MP) and
has successfully established a link to a Mesh gateway.

o Path Discovery: Returns success only if at least one Mesh gate is visible in the routing
table.

Prototype:

u8_t wlan_mesh_get status(void)

Precondition: Device must be operating in Mesh mode (refer to Mesh Overview).

Returns Parameters

1: Connected to mesh gateway. void
0: Not connected or mode mismatch.

2.10.4 Monitoring Mesh Connection

In addition to polling with wlan_mesh_get_status(), the application can use the Signal
Framework to receive asynchronous notifications about the Mesh connection state.

o SIG_SDK_WLAN_CONNECTED: Triggered when the device successfully joins the
Mesh network and finds a path to the Root Node.

e SIG_SDK_WLAN_DISCONNECTED: Triggered when the link to the Mesh network or
the Root Node is lost.

Page 56 of 62
¢ www.ampedrftech.com

WLAN API Reference Guide

For details on how to subscribe to and handle these events, refer to the Signal Framework
section.

2.10.5 Configuration Workflow

To successfully start a Mesh node, the application should follow this strict sequence:

Set Mode: Configure DeviceMode to MP.

Set Channel: Ensure the Channel is set to the designated Mesh frequency.

Configure Identity: Set the MESH_ID to the target network name.

Configure Security: Set MESH_AuthType and MESH_PassPhrase to match the network

credentials.

o Configure Network: Assign a unique static IPAddress and common GateWay to the
device.

¢ Apply Changes: Call wlan_restart() to reboot the module and initialize the Mesh stack

with the new settings.

Note: Mesh networking does not typically use DHCP for self-addressing in this SDK
version. Static IP assignment is recommended to ensure reachability.

2.10.6 Example: Mesh Connection

The following steps describe the correct procedure to configure and enable a Mesh network
connection using wlan_config_info(). Note: A system restart is required for these
changes to take effect.

Configuration Steps:

Configure Device Mode: Set to "MP" (Mesh Point) (AMP_VARID DEVICE_MODE).
Configure Channel: Set the operating channel number (AMP_VARID_CHANNEL).
Configure Mesh ID: Set the Mesh Network ID string (AMP_VARID_MESH_ID).
Configure Mesh Auth Type: Set authentication type (0/2)
(AMP_VARID_MESH_AUTH_TYPE).

Configure Mesh Passphrase: Set the mesh password
(AMP_VARID_MESH_PASS PHRASE).

Configure IP Address: Set the static IP address (AMP_VARID_IP_ADDRESS).
Configure NetMask: Set the subnet mask (AMP_VARID_NET_MASK).

Configure Gateway: Set the gateway IP address (AMP_VARID_GATE_WAY).
Restart System: Call wlan_restart() to apply the new configuration.

Code Example:

#include "wlan_config.h"
#include "wlan_com.h"
#include "wlan_sys.h"
#include <stdio.h>

int test_mesh_setup_example(int word_count, char **words)

{
wlan _printf("Starting Mesh Configuration...\n");

Page 57 of 62
www.ampedrftech.com

WLAN API Reference Guide

wlan_config_info(AMP_VARID_DEVICE_MODE, "MP");

printf("Set Device Mode(var %d) to MP\n", AMP_VARID DEVICE_MODE);
// 2. Configure Static IP Address
wlan_config_info(AMP_VARID_IP_ADDRESS, "192.168.0.90");
printf("Set Static IP Address to 192.168.0.90\n");

// 3. Configure NetMask
wlan_config_info(AMP_VARID NET_MASK, "255.255.255.0");
printf("Set NetMask to 255.255.255.0\n");

// 4. Configure Gateway IP
wlan_config_info(AMP_VARID GATE_WAY, "192.168.0.1");
printf("Set Gateway IP to 192.168.0.1\n");

// 5. Configure Channel (e.g., Channel 161)

wlan_config info(AMP_VARID CHANNEL, "161");
printf("Set Channel to 161\n");

// 6. Configure Mesh ID
wlan_config info(AMP_VARID MESH_ID, "mymesh123456789");
printf("Set Mesh ID to mymesh123456789\n");

// 7. Configure Mesh Auth Type (e.g., 2 for Auth)
wlan_config_info(AMP_VARID_MESH_AUTH_TYPE, "2");
printf("Set Mesh Auth Type to 2\n");

// 8. Configure Mesh Passphrase
wlan_config_info(AMP_VARID_MESH_PASS PHRASE, "12345678");
printf("Set Mesh Passphrase to 12345678\n");

printf("Waiting 1 second before restart...\n");
vTaskDelay(pdMS TO TICKS(1000));

// 9. Restart System to Apply Changes
wlan_printf("Configuration complete. Restarting system...\n");
wlan_restart();

}

3. Demo Application Implementation Guide

This document explains the implementation of the demo application logic within
vAppMainTask, focusing on how it leverages the Signal Framework to handle system
events asynchronously. This pattern serves as a reference for developing user applications
on the WiFi SDK.

Page 58 of 62
www.ampedrftech.com

WLAN API Reference Guide
3.1 Overview

The vAppMainTask is the central orchestration task for the application. Instead of polling for
status updates, it uses a message queue to receive real-time events (Signals) from the
SDK. This design ensures the application is responsive and efficient.

Key Components:

e FreeRTOS Queue: A buffer to hold incoming events.

o Signal Subscriptions: Registering interest in specific system events (e.g., WiFi
connection, MQTT data).

o Event Loop: A continuous loop that blocks until an event arrives, then processes it.

3.2 Implementation Logic

The implementation is found in Application/src/amp_example.c (referenced by
Application/src/wifi_app.c).

3.2.1 Initialization

First, the task creates a FreeRTOS queue capable of holding sdk_signal_t structures.

void vAppMainTask(void *pvParameters)

{

QueueHandle_t xAppQueue = xQueueCreate(20, sizeof(sdk_signal t));
if (xAppQueue == NULL) {

return;

}
3.2.2 Subscribing to Signals

The application explicitly subscribes to the events it needs. It uses SDK_SUB_MODE_REPEAT
mode, which allows the application to "listen in" on events while letting the SDK continues its
standard background processing.

Tip: Since the application and the SDK share the same payload pointer in REPEAT
mode, the application should not modify the original data. If modification is required
for business logic, the application must create a local copy of the data first.

wlan_sdk_subscribe(SIG_SDK_SYS INIT DONE, xAppQueue, SDK SUB_MODE_REPEA
T);

wlan_sdk_subscribe(SIG_SDK_JOIN_SUCESS, xAppQueue, SDK_SUB_MODE_REPEA
T);

wlan_sdk subscribe(SIG_SDK JOIN FAILED, xAppQueue, SDK SUB MODE_REPEA
T);

wlan_sdk_subscribe(SIG_SDK_WLAN_CONNECTED, xAppQueue, SDK_SUB_MODE_REPE

Page 59 of 62
www.ampedrftech.com

WLAN API Reference Guide

AT);

wlan_sdk_subscribe(SIG_SDK_WLAN_ DISCONNECTED, xAppQueue, SDK_SUB_MODE_R
EPEAT);

wlan_sdk_subscribe(SIG_SDK_WLAN_IP_CHANGED, xAppQueue, SDK_SUB_MODE_REP
EAT);

wlan_sdk_subscribe(SIG_SDK_MQTT_CONNECT_OK, xAppQueue, SDK_SUB_MODE_REP
EAT);

wlan_sdk_subscribe(SIG_SDK_MQTT_DATA_DOWN, xAppQueue, SDK_SUB_MODE_REPE
AT);

3.2.3 The Event Loop

The core of the task is an infinite loop that waits for signals.
for (55) {

if (xQueueReceive(xAppQueue, &msg, portMAX_DELAY) == pdPASS) {

msg_processed_for_test(&msg, &net_status);

NOTE

}

3.3 Signal Processing (msg_processed_for_test)

The msg_processed_for_test function acts as a dispatcher, executing specific business
logic based on the msg. id.

e SIG_SDK_SYS_INIT_DONE:

o Action: Calls start_wifi_example().
o Logic:
e STA Mode: Initiates the connection sequence by calling
test_wlan_sta_example(), which configures the device and calls
wlan_sta join() with default credentials.
o MP Mode: Validates Mesh parameters. If valid, the SDK will automatically initiate
the Mesh joining process. Otherwise, re-configuration of Mesh parameters is
required.

e SIG_SDK_JOIN_SUCESS:

o Action: Calls on_join_success().
o Logic: NULL.

e SIG_SDK_JOIN_FAILED:

Page 60 of 62
www.ampedrftech.com

WLAN API Reference Guide

o Action: Calls on_join_fail().
o Logic: Explicitly call start_wifi_example to initiate the reconnection process.

SIG_SDK_WLAN_CONNECTED:

o Action: Calls on_wlan_connected().
o Logic:
o STA Mode: Logs the event. Waits for IP address assignment (via DHCP).
e MP Mode: Immediately starts the MQTT application task (mqtt_example_task)
as Mesh usually uses static IP.

SIG_SDK_WLAN_IP_CHANGED:

o Action: Calls on_wlan_ip_changed().
o Logic: Retrieves the new IP info. If the IP is valid, it starts the MQTT application task
(mgtt_example_task).

SIG_SDK_WLAN_DISCONNECTED:

o Action: Calls on_wlan_disconnected().
o Logic:
Disconnects MQTT (wlan_mqgtt_disconnect).

Explicitly calls wlan_sta_unjoin() to clean up.

Calls start_wifi_example() to restart the connection loop.

SIG_SDK_MQTT DATA_DOWN:

o Action: Calls on_mqgtt_data_down().
o Logic: Parses the incoming MQTT message.

Note on Automatic Reconnection:

STA Mode: If the application is intended to automatically restore connectivity with the
AP, it must explicitly call wlan_sta_join() upon receiving either
SIG_SDK_JOIN_FAILED or SIG_SDK_WLAN_DISCONNECTED signals.

Mesh Point (MP) Mode: Upon receiving SIG_SDK_WLAN_DISCONNECTED, the SDK will
automatically attempt to reconnect to the mesh network. No explicit application-level
intervention is required.

Page 61 of 62

www.ampedrftech.com

